TY - GEN
T1 - Practical approach to evacuation planning via network flow and deep learning
AU - Tanaka, Akira
AU - Hata, Nozomi
AU - Tateiwa, Nariaki
AU - Fujisawa, Katsuki
PY - 2017/7/1
Y1 - 2017/7/1
N2 - In this paper, we propose a practical approach to evacuation planning by utilizing network flow and deep learning algorithms. In recent years, large amounts of data are rapidly being stored in the cloud system, and effective data utilization for solving real-world problems is required more than ever. Hierarchical Data Analysis and Optimization System (HDAOS) enables us to select appropriate algorithms according to the degree of difficulty in solving problems and a given time for the decision-making process, and such selection helps address real-world problems. In the field of emergency evacuation planning, however, the Lexicographically Quickest Flow (LQF) algorithm has an extremely long computation time on a large-scale network, and is therefore not a practical solution. For Osaka city, which is the second-largest city in Japan, we must solve the maximum flow problems on a large-scale network with over 8.3M nodes and 32.8M arcs for obtaining an optimal plan. Consequently, we can feed back nothing to make an evacuation plan. To solve the problem, we utilize the optimal solution as training data of a deep Convolutional Neural Network (CNN). We train a CNN by using the results of the LQF algorithm in normal time, and in emergencies predict the evacuation completion time (ECT) immediately by the well-learned CNN. Our approach provides almost precise ECT, achieving an average regression error of about 2%. We provide several techniques for combining LQF with CNN and addressing numerous movements as CNN's input, which has rarely been considered in previous studies. Hodge decomposition also demonstrates that LQF is efficient from the standpoint of the total distance traveled by all evacuees, which reinforces the validity of the method of utilizing the LQF algorithm for deep learning.
AB - In this paper, we propose a practical approach to evacuation planning by utilizing network flow and deep learning algorithms. In recent years, large amounts of data are rapidly being stored in the cloud system, and effective data utilization for solving real-world problems is required more than ever. Hierarchical Data Analysis and Optimization System (HDAOS) enables us to select appropriate algorithms according to the degree of difficulty in solving problems and a given time for the decision-making process, and such selection helps address real-world problems. In the field of emergency evacuation planning, however, the Lexicographically Quickest Flow (LQF) algorithm has an extremely long computation time on a large-scale network, and is therefore not a practical solution. For Osaka city, which is the second-largest city in Japan, we must solve the maximum flow problems on a large-scale network with over 8.3M nodes and 32.8M arcs for obtaining an optimal plan. Consequently, we can feed back nothing to make an evacuation plan. To solve the problem, we utilize the optimal solution as training data of a deep Convolutional Neural Network (CNN). We train a CNN by using the results of the LQF algorithm in normal time, and in emergencies predict the evacuation completion time (ECT) immediately by the well-learned CNN. Our approach provides almost precise ECT, achieving an average regression error of about 2%. We provide several techniques for combining LQF with CNN and addressing numerous movements as CNN's input, which has rarely been considered in previous studies. Hodge decomposition also demonstrates that LQF is efficient from the standpoint of the total distance traveled by all evacuees, which reinforces the validity of the method of utilizing the LQF algorithm for deep learning.
UR - http://www.scopus.com/inward/record.url?scp=85047840489&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85047840489&partnerID=8YFLogxK
U2 - 10.1109/BigData.2017.8258322
DO - 10.1109/BigData.2017.8258322
M3 - Conference contribution
T3 - Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
SP - 3368
EP - 3377
BT - Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017
A2 - Nie, Jian-Yun
A2 - Obradovic, Zoran
A2 - Suzumura, Toyotaro
A2 - Ghosh, Rumi
A2 - Nambiar, Raghunath
A2 - Wang, Chonggang
A2 - Zang, Hui
A2 - Baeza-Yates, Ricardo
A2 - Baeza-Yates, Ricardo
A2 - Hu, Xiaohua
A2 - Kepner, Jeremy
A2 - Cuzzocrea, Alfredo
A2 - Tang, Jian
A2 - Toyoda, Masashi
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 5th IEEE International Conference on Big Data, Big Data 2017
Y2 - 11 December 2017 through 14 December 2017
ER -