Potential ability of zeolite to generate high-temperature vapor using waste heat

Jun Fukai, Agung Tri Wijayanta

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Citations (Scopus)

Abstract

In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.

Original languageEnglish
Title of host publication3rd International Conference on Industrial Mechanical, Electrical, and Chemical Engineering
Editors Fadilah, Adrian Nur, Anatta Wahyu Budiman, Sperisa Distantina, Ari Diana Susanti, Agung Tri Wijayanta
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735416239
DOIs
Publication statusPublished - Feb 9 2018
Event3rd International Conference on Industrial Mechanical, Electrical, and Chemical Engineering, ICIMECE 2017 - Surakarta, Indonesia
Duration: Sept 13 2017Sept 14 2017

Publication series

NameAIP Conference Proceedings
Volume1931
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

Other3rd International Conference on Industrial Mechanical, Electrical, and Chemical Engineering, ICIMECE 2017
Country/TerritoryIndonesia
CitySurakarta
Period9/13/179/14/17

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Potential ability of zeolite to generate high-temperature vapor using waste heat'. Together they form a unique fingerprint.

Cite this