Pole vaulting robot with dual articulated arms that can change reaching position using active bending motion

Satoshi Nishikawa, Tomohiro Kobayashi, Toshihiko Fukushima, Yasuo Kuniyoshi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Citations (Scopus)

Abstract

Elasticity is an important factor in enhancing the physical capabilities of robots. Pole vaulting is an interesting task because a large elastic pole changes the trajectory of the robot drastically. Moreover, the robot can change its behavior by manipulating the flexible pole during a long pole-support phase. In this study, we investigated how the reaching point of pole vaulting was changed by an active bending motion because it is important for robots to move to the desired place. To examine the effect of motion, we used a multiple pendulum model and a robot having dual articulated arms with grippers. Simulation results showed that reaching positions were changed by the switching time of the active bending motion. A relatively late switching time allowed robots to vault to a farther position. However, a very late switching time had the opposite effect. Then, we developed a pole vaulting robot having dual articulated arms with grippers for the application of humanoid robots. Pole vaulting experiments using this robot showed the same tendency in the simulation. These results indicated that the reaching position of pole vaulting could be controlled by the switching time of active bending. Further, the robot reached a height of 1.67 m by releasing the pole.

Original languageEnglish
Title of host publicationHumanoids 2015
Subtitle of host publicationHumanoids in the New Media Age - IEEE RAS International Conference on Humanoid Robots
PublisherIEEE Computer Society
Pages395-400
Number of pages6
ISBN (Electronic)9781479968855
DOIs
Publication statusPublished - Dec 22 2015
Externally publishedYes
Event15th IEEE RAS International Conference on Humanoid Robots, Humanoids 2015 - Seoul, Korea, Republic of
Duration: Nov 3 2015Nov 5 2015

Publication series

NameIEEE-RAS International Conference on Humanoid Robots
Volume2015-December
ISSN (Print)2164-0572
ISSN (Electronic)2164-0580

Conference

Conference15th IEEE RAS International Conference on Humanoid Robots, Humanoids 2015
Country/TerritoryKorea, Republic of
CitySeoul
Period11/3/1511/5/15

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Hardware and Architecture
  • Human-Computer Interaction
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Pole vaulting robot with dual articulated arms that can change reaching position using active bending motion'. Together they form a unique fingerprint.

Cite this