Platinum-decorated tin oxide and niobium-doped tin oxide pefc electrocatalysts: Oxygen reduction reaction activity

T. Tsukatsune, Y. Takabatake, Z. Noda, T. Daio, A. Zaitsu, S. M. Lyth, A. Hayashi, K. Sasaki

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)


Using tin oxide (SnO2) and niobium-doped tin oxide (Nb-SnO2) as alternative electrocatalyst support materials can effectively solve the issue of carbon corrosion in polymer electrolyte fuel cell (PEFC) cathodes. Here, we systematically explore the effect of support surface area, Pt loading, and Pt nanoparticle size on the electrochemistry of these carbon-free electrocatalysts. Reducing the Pt loading leads to an increase in electrochemical surface area, but the specific activity decreases as previously observed in conventional carbon based electrocatalysts. Removing residual chlorine impurities by replacing the H2PtCl6 nanoparticle precursor with Pt(acac)2 increases the specific activity. Niobium-doping of the SnO2 support also results in an increase in specific activity, due to the increased electronic conductivity. Consequently, the oxygen reduction reaction activity of optimized Pt-decorated Nb-SnO2 is approaching to that of Pt-decorated carbon black, the current state-of-the-art PEFC electrocatalyst.

Original languageEnglish
Pages (from-to)F1208-F1213
JournalJournal of the Electrochemical Society
Issue number12
Publication statusPublished - 2014

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Materials Chemistry


Dive into the research topics of 'Platinum-decorated tin oxide and niobium-doped tin oxide pefc electrocatalysts: Oxygen reduction reaction activity'. Together they form a unique fingerprint.

Cite this