Plasma modification of poly(2-heptadecyl-4-vinylthieno[3,4-d]thiazole) low bandgap polymer and its application in solar cells

Pankaj Attri, Vishal Bharti, Young Sun Kim, Jitender Gaur, Suresh Chand, Gi Chung Kwon, Seung Hyun Lee, Weontae Lee, Eun Ha Choi, In Tae Kim

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

For the first time, we here propose a green methodology to modify a low bandgap polymer for highly efficient solar cells using atmospheric pressure plasma jet or soft plasma operating on different feeding gases (air, Ar and N2). The physical properties of the modified polymer were investigated using conductivity measurements, UV-visible spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammograms, atomic force microscopy, cathodoluminescence and confocal Raman spectroscopy. Further, we examined the variation of the work function of the polymer before and after plasma treatment using a γ-focused ion beam. Additionally, photovoltaic cells based on the plasma-modified polymer having ITO/PEDOT:PSS/PHVTT (with or without plasma modification):PC71BM/LiF/Al configuration were fabricated and then characterized. We found that the power conversion efficiency (PCE) of the plasma-modified polymer increased dramatically as compared to the control polymer (without plasma treatment). PCE of the control polymer was found to be 4.11%, while after air, Ar and N2 gas plasma treatment the polymer showed PCEs of 4.85%, 4.87% and 5.14% respectively. Thus, plasma treatment not only alters the surface properties, but also modifies the bulk properties (changes in HOMO and LUMO bandgap level). Hence, this work provides new dimensions to explore more about plasma and polymer chemistry.

Original languageEnglish
Pages (from-to)27043-27052
Number of pages10
JournalPhysical Chemistry Chemical Physics
Volume16
Issue number48
DOIs
Publication statusPublished - Nov 19 2014
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Plasma modification of poly(2-heptadecyl-4-vinylthieno[3,4-d]thiazole) low bandgap polymer and its application in solar cells'. Together they form a unique fingerprint.

Cite this