TY - JOUR
T1 - Physiological basis of seasonal trend in leaf photosynthesis of five evergreen broad-leaved species in a temperate deciduous forest
AU - Miyazawa, Yoshiyuki
AU - Kikuzawa, Kihachiro
PY - 2006/2
Y1 - 2006/2
N2 - The physiological basis of photosynthesis during winter was investigated in saplings of five evergreen broad-leaved species (Camellia japonica L., Cleyera japonica Thunb., Photinia glabra (Thunb.) Maxim., Castanopsis cuspidata (Thunb.) Schottky and Quercus glauca Thunb.) co-occurring under deciduous canopy trees in a temperate forest. We focused on temperature dependence of photosynthetic rate and capacity as important physiological parameters that determine light-saturated rates of net photosynthesis at low temperatures during winter. Under controlled temperature conditions, maximum rates of ribulose bisphosphate carboxylation and electron transport (Vcmax and Jmax, respectively) increased exponentially with increasing leaf temperature. The temperature dependence of photosynthetic rate did not differ among species. In the field, photosynthetic capacity, determined as Vcmax and J max at a common temperature of 25°C (Vcmax (25) and Jmax(25)), increased until autumn and then decreased in species-specific patterns. Values of Vcmax (25) and Jmax(25) differed among species during winter. There was a positive correlation of Vcmax(25) with area-based nitrogen concentration among leaves during winter in Camellia and Photinia. Interspecific differences in Vcmax(25) were responsible for interspecific differences in light-saturated rates of net photosynthesis during winter.
AB - The physiological basis of photosynthesis during winter was investigated in saplings of five evergreen broad-leaved species (Camellia japonica L., Cleyera japonica Thunb., Photinia glabra (Thunb.) Maxim., Castanopsis cuspidata (Thunb.) Schottky and Quercus glauca Thunb.) co-occurring under deciduous canopy trees in a temperate forest. We focused on temperature dependence of photosynthetic rate and capacity as important physiological parameters that determine light-saturated rates of net photosynthesis at low temperatures during winter. Under controlled temperature conditions, maximum rates of ribulose bisphosphate carboxylation and electron transport (Vcmax and Jmax, respectively) increased exponentially with increasing leaf temperature. The temperature dependence of photosynthetic rate did not differ among species. In the field, photosynthetic capacity, determined as Vcmax and J max at a common temperature of 25°C (Vcmax (25) and Jmax(25)), increased until autumn and then decreased in species-specific patterns. Values of Vcmax (25) and Jmax(25) differed among species during winter. There was a positive correlation of Vcmax(25) with area-based nitrogen concentration among leaves during winter in Camellia and Photinia. Interspecific differences in Vcmax(25) were responsible for interspecific differences in light-saturated rates of net photosynthesis during winter.
UR - http://www.scopus.com/inward/record.url?scp=33644899403&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33644899403&partnerID=8YFLogxK
U2 - 10.1093/treephys/26.2.249
DO - 10.1093/treephys/26.2.249
M3 - Article
C2 - 16356922
AN - SCOPUS:33644899403
SN - 0829-318X
VL - 26
SP - 249
EP - 256
JO - Tree physiology
JF - Tree physiology
IS - 2
ER -