Abstract
Iron (III) and niobium (V)-codoped TiO2 nanopowders have been synthesized by Ar/O2 RF thermal plasma. Phase composition, morphology, and photocatalytic performance of the plasma-generated powders have been investigated by the combined means of XRD, FE-SEM/TEM, and UV-vis absorption spectroscopy. Rutile formation in the plasma-produced phase composition of anatase and rutile was promoted by Fe3+ addition but was inhibited by Nb5+ doping. The resultant powders consisted of a majority of fine crystallites (several nanometers) and a small portion of coarse particles (~ 100 nm). In comparison with TiO2 singly doped with 0.1 at.% of Fe3+, photocatalytic reactivity of codoped TiO2 was improved at 2.0 at.% of Nb5+ but was depressed at 6.0 at.% under the UV irradiation, indicating that UV-induced photocatalytic capability was dominated by Nb5+ doping concentration. In contrast to the case of 1.0 at.% of Fe3+ single addition, the codoped sample obtained the decreased photocatalytic performance with increasing Nb5+ content under the visible light irradiation, due to the low visible light absorption resulting from a broadened band gap.
Original language | English |
---|---|
Pages (from-to) | 6940-6943 |
Number of pages | 4 |
Journal | Thin Solid Films |
Volume | 519 |
Issue number | 20 |
DOIs | |
Publication status | Published - Aug 1 2011 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Surfaces and Interfaces
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry