Abstract
The phase transformation in the La(CoxNi5-x)-H systems (x = 2, 3, 5) were investigated using in situ X-ray diffraction (XRD). La(CoxNi5-x) (x = 2, 3) formed α, β, γ and δ hydride phases with increasing hydrogen content while LaCo 5 formed only α, β and γ hydride phases. The metal lattice of each phase is hexagonal in P6/mmm symmetry (α), orthorhombic in Cmmm symmetry (β) and orthorhombic in Im2m symmetry (γ), commonly observed for x = 2, 3, 5. The δ phase observed for x = 2, 3 has a hexagonal structure with P6/mmm symmetry, which was characterized for the first time in this study. The lattice expansion accompanied by the phase transformation was anisotropic for Co-rich compositions (x ≥ 2) compared with Ni-rich compositions (x = 0, 1). The lattice parameters changed with increasing hydrogen solution in the γ and δ single-phase regions for x = 2 and 3. Anisotropic lattice strain related with dense dislocations was not introduced through formation of any hydride phases. The isotropic strain increased upon formation of the δ phase but disappeared in subsequent phase transformation.
Original language | English |
---|---|
Pages (from-to) | 54-62 |
Number of pages | 9 |
Journal | Journal of Alloys and Compounds |
Volume | 413 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - Mar 9 2006 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Mechanics of Materials
- Mechanical Engineering
- Metals and Alloys
- Materials Chemistry