Performance of TES X-ray microcalorimeters with a novel absorber design

Simon R. Bandler, R. P. Brekosky, A. D. Brown, J. A. Chervenak, E. Figueroa-Feliciano, F. M. Finkbeiner, N. Iyomoto, R. L. Kelley, C. A. Kilbourne, F. S. Porter, J. Sadleir, S. J. Smith

Research output: Contribution to journalArticlepeer-review

72 Citations (Scopus)


Superconducting transition-edge sensor (TES) microcalorimeters have demonstrated the Constellation-X requirements for spectral resolution, speed, and pixel size in a close-packed geometry. We will present our recent breakthrough energy resolution with sensors that have all gold and bismuth-gold absorbers. This has been enabled by cantilevered absorbers that make contact to the TES only in regions that are not part of the active thermometer. With this approach, rapid thermalization of the x-ray energy is achieved and interaction between the absorber and TES sensor films is avoided. This design allows us to obtain uniform high performance and is compatible with large-format, high fill-factor arrays. We will discuss this design, the results we have achieved in 8×8 arrays of these pixels, and the dependence of the performance on the geometry of the absorber contact area and on stress within the sensor.

Original languageEnglish
Pages (from-to)400-405
Number of pages6
JournalJournal of Low Temperature Physics
Issue number1-2 PART 1
Publication statusPublished - Apr 2008
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics
  • General Materials Science
  • Condensed Matter Physics


Dive into the research topics of 'Performance of TES X-ray microcalorimeters with a novel absorber design'. Together they form a unique fingerprint.

Cite this