TY - GEN
T1 - Performance Assessment of Recycled Tire Materials in Marine Landfill Application
AU - Hao, Chunrui
AU - Hazarika, Hemanta
AU - Isobe, Yusaku
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
PY - 2021
Y1 - 2021
N2 - In the marine landfill sites, the alluvial clay layer is mainly used as the impermeable layer at the bottom of the site. This paper provides initial findings regarding the utilization of tire-derived geomaterials (TDGM) in the form of a horizontal layer placed between waste and alluvium clay layers in marine landfill sites. The purpose of installing the reinforcement layer is to protect the alluvium clay layer (Impermeable layer) from waste input. On the other hand, the reinforcement layer is also placed underneath the waste to ensure the collection and drainage of leachate during the degradation and the consolidation of waste. The effectiveness of such configuration is investigated numerically with the PLAXIS 2D software. The Sekiguchi-Ohta model (Viscid model) and hardening soil model are used as the material model, so that the settlement behavior was captured. The purpose of this research is to evaluate the effectiveness of horizontal reinforcing inclusion made from TDGM in mitigating settlement and damage of the alluvium clay layer.
AB - In the marine landfill sites, the alluvial clay layer is mainly used as the impermeable layer at the bottom of the site. This paper provides initial findings regarding the utilization of tire-derived geomaterials (TDGM) in the form of a horizontal layer placed between waste and alluvium clay layers in marine landfill sites. The purpose of installing the reinforcement layer is to protect the alluvium clay layer (Impermeable layer) from waste input. On the other hand, the reinforcement layer is also placed underneath the waste to ensure the collection and drainage of leachate during the degradation and the consolidation of waste. The effectiveness of such configuration is investigated numerically with the PLAXIS 2D software. The Sekiguchi-Ohta model (Viscid model) and hardening soil model are used as the material model, so that the settlement behavior was captured. The purpose of this research is to evaluate the effectiveness of horizontal reinforcing inclusion made from TDGM in mitigating settlement and damage of the alluvium clay layer.
UR - http://www.scopus.com/inward/record.url?scp=85104412917&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85104412917&partnerID=8YFLogxK
U2 - 10.1007/978-981-16-0077-7_12
DO - 10.1007/978-981-16-0077-7_12
M3 - Conference contribution
AN - SCOPUS:85104412917
SN - 9789811600760
T3 - Lecture Notes in Civil Engineering
SP - 117
EP - 126
BT - Advances in Sustainable Construction and Resource Management
A2 - Hazarika, Hemanta
A2 - Madabhushi, Gopal Santana
A2 - Yasuhara, Kazuya
A2 - Bergado, Dennes T.
PB - Springer Science and Business Media Deutschland GmbH
T2 - 1st International Symposium on Construction Resources for Environmentally Sustainable Technologies, CREST 2020
Y2 - 9 March 2021 through 11 March 2021
ER -