TY - JOUR
T1 - Pentatricopeptide repeat motifs in the processing enzyme PRORP1 in Arabidopsis thaliana play a crucial role in recognition of nucleotide bases at TψC loop in precursor tRNAs
AU - Imai, Takayoshi
AU - Nakamura, Takahiro
AU - Maeda, Taku
AU - Nakayama, Kaoru
AU - Gao, Xuzhu
AU - Nakashima, Takashi
AU - Kakuta, Yoshimitsu
AU - Kimura, Makoto
N1 - Funding Information:
We are grateful to Dr. T. Teramoto (National Institute of Environmental Health Sciences at Durham, USA) for his useful suggestions. This work was supported in part by a grant-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (No. 22380062 to M.K.).
PY - 2014/8/8
Y1 - 2014/8/8
N2 - Proteinaceous RNase P (PRORP1) in Arabidopsis thaliana is an endoribonuclease that catalyzes hydrolysis to remove the 5′-leader sequence of precursor tRNAs (pre-tRNAs). PRORP1 is composed of pentatricopeptide repeat (PPR) motifs, a central linker region, and a metal nuclease domain, the NYN domain. The PPR motifs are single-stranded RNA-binding motifs that recognize bases in a modular fashion. To obtain insight into the mechanism by which the PPR motifs in PRORP1 recognize a target sequence in catalysis, N-terminal successive deletion mutants were overproduced in Escherichia coli, and the resulting proteins were characterized in terms of enzymatic activity using chloroplast pre-tRNAPhe as a substrate. Although Δ89, in which all PPR motifs are present, retained the pre-tRNA cleavage activity, Δ129 devoid of the first PPR motif (PPR1) had significantly reduced cleavage activity. Likewise, deletions of the second (PPR2) or third PPR (PPR3) motif abolished the cleavage activity, suggesting that PPR motifs play a crucial role in catalysis. A proposed recognition code for PPR motifs predicted that PPR2-PPR5 in PRORP1 recognize C, A/U, A, and U, respectively, whose sequence is in good agreement with C56-A57-A58-A59 in the TψC loop in pre-tRNA Phe. Mutational analyses of nucleotide residues in the TψC loop as well as nucleotide-specifying residues (NSRs) in PPR motifs further suggested that PPR2 and PPR3 in PRORP1 favorably recognize nucleotide bases C56 and A57 at the TψC loop in pre-tRNAPhe, respectively. This prediction and previous biochemical data were combined to construct a fitting model of tRNA onto PRORP1, showing that the mechanism by which PRORP1 recognizes pre-tRNAs appears to be distinct from that by bacterial RNase P.
AB - Proteinaceous RNase P (PRORP1) in Arabidopsis thaliana is an endoribonuclease that catalyzes hydrolysis to remove the 5′-leader sequence of precursor tRNAs (pre-tRNAs). PRORP1 is composed of pentatricopeptide repeat (PPR) motifs, a central linker region, and a metal nuclease domain, the NYN domain. The PPR motifs are single-stranded RNA-binding motifs that recognize bases in a modular fashion. To obtain insight into the mechanism by which the PPR motifs in PRORP1 recognize a target sequence in catalysis, N-terminal successive deletion mutants were overproduced in Escherichia coli, and the resulting proteins were characterized in terms of enzymatic activity using chloroplast pre-tRNAPhe as a substrate. Although Δ89, in which all PPR motifs are present, retained the pre-tRNA cleavage activity, Δ129 devoid of the first PPR motif (PPR1) had significantly reduced cleavage activity. Likewise, deletions of the second (PPR2) or third PPR (PPR3) motif abolished the cleavage activity, suggesting that PPR motifs play a crucial role in catalysis. A proposed recognition code for PPR motifs predicted that PPR2-PPR5 in PRORP1 recognize C, A/U, A, and U, respectively, whose sequence is in good agreement with C56-A57-A58-A59 in the TψC loop in pre-tRNA Phe. Mutational analyses of nucleotide residues in the TψC loop as well as nucleotide-specifying residues (NSRs) in PPR motifs further suggested that PPR2 and PPR3 in PRORP1 favorably recognize nucleotide bases C56 and A57 at the TψC loop in pre-tRNAPhe, respectively. This prediction and previous biochemical data were combined to construct a fitting model of tRNA onto PRORP1, showing that the mechanism by which PRORP1 recognizes pre-tRNAs appears to be distinct from that by bacterial RNase P.
UR - http://www.scopus.com/inward/record.url?scp=84906096038&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84906096038&partnerID=8YFLogxK
U2 - 10.1016/j.bbrc.2014.07.030
DO - 10.1016/j.bbrc.2014.07.030
M3 - Article
C2 - 25034328
AN - SCOPUS:84906096038
SN - 0006-291X
VL - 450
SP - 1541
EP - 1546
JO - Biochemical and Biophysical Research Communications
JF - Biochemical and Biophysical Research Communications
IS - 4
ER -