Particle-in-cell simulation of an optimized high-efficiency multistage plasma thruster

Paul Matthias, Daniel Kahnfeld, Ralf Schneider, Suk Hyun Yeo, Hideaki Ogawa

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

Electric propulsion attracts increasing attention in contemporary space missions as an interesting alternative to chemical propulsion because of the high efficiency it offers. The High-Efficiency Multistage Plasma thruster, a class of cusped field thruster, is able to operate at different anode voltages and operation points and thereby generate different levels of thrust in a stable and efficient way. Since experiments of such thrusters are inherently expensive, multi-objective design optimization (MDO) is of great interest. Several optimized thruster designs have resulted from a MDO model based on a zero-dimensional (0D) power balance model. However, the MDO solutions do not warrant self-consistency due to their dependency on estimation from empirical modelling based on former experimental studies. In this study, one of the optimized thruster designs is investigated by means of particle-in-cell (PIC) analysis to examine the predicted performance characteristics with self-consistent simulations. The 0D power balance model is used to develop additional diagnostics for the PIC simulations to improve the physics analysis. Using input parameters for the 0D power balance model from the PIC simulations allows further improvement for the design optimization.

Original languageEnglish
Article numbere201900028
JournalContributions to Plasma Physics
Volume59
Issue number9
DOIs
Publication statusPublished - Oct 1 2019

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Particle-in-cell simulation of an optimized high-efficiency multistage plasma thruster'. Together they form a unique fingerprint.

Cite this