TY - JOUR
T1 - Partial purification and reconstitution of inositol 1,4,5-trisphosphate receptor/Ca2+ channel of bovine liver microsomes
AU - Kamata, Hideaki
AU - Hirata, Masato
AU - Ozaki, Shoichiro
AU - Kusaka, Iwao
AU - Kagawa, Yasuo
AU - Hirata, Hajime
PY - 1992/4
Y1 - 1992/4
N2 - The binding of inositol-1,4,5-trisphosphate [Ins(1,4,5)P3] to bovine liver microsomes was characterized. The Ins(1,4,5)P3 receptor of the microsomes was solubilized by 1% Triton X-100 and purified by sucrose density gradient, Heparin-Sepharose, DEAE-Toyopearl, ATP-Agarose, and Ins(1,4,5)P3-Sepharose column chromatographies. More than 1,000-fold enrichment of the Ins(1,4,5)P3-binding activity was achieved. Kd values of the binding activity were 2.8 nM in microsomes and 3.0 nM in the partially purified receptor, respectively, and the binding activity was optimal in the medium containing 100 mM KCl and at pH between 7.5 and 8.5. The presence of Ca2+ failed to inhibit the binding. Phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylinositol (Ptdlns), and phosphatidylinositol-4-monophosphate [PtdIns(4)P] showed no effect on the Ins(1,4,5)P3 binding. However, soybean phospholipids asolectin and phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] strongly inhibited the binding activity. PtdIns(4,5)P2 inhibited the activity competitively with a half-maximal inhibitory concentration of 30 μg/ml. The partially purified Ins(1,4,5)P3 receptor was reconstituted into proteoliposomes. Fluorescence measurements using Quin 2 indicated that Ins(1,4,5)P3 stimulated Ca2+ influx into the proteoliposomes. The EC50 of Ins(1,4,5)P3 on Ca2+ influx was 50 nM. This result strongly suggest that Ins(1,4,5)P3 binding protein of liver microsomes acts as a physiological Ins(1,4,5)P3 receptor/Ca2+ channel.
AB - The binding of inositol-1,4,5-trisphosphate [Ins(1,4,5)P3] to bovine liver microsomes was characterized. The Ins(1,4,5)P3 receptor of the microsomes was solubilized by 1% Triton X-100 and purified by sucrose density gradient, Heparin-Sepharose, DEAE-Toyopearl, ATP-Agarose, and Ins(1,4,5)P3-Sepharose column chromatographies. More than 1,000-fold enrichment of the Ins(1,4,5)P3-binding activity was achieved. Kd values of the binding activity were 2.8 nM in microsomes and 3.0 nM in the partially purified receptor, respectively, and the binding activity was optimal in the medium containing 100 mM KCl and at pH between 7.5 and 8.5. The presence of Ca2+ failed to inhibit the binding. Phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylinositol (Ptdlns), and phosphatidylinositol-4-monophosphate [PtdIns(4)P] showed no effect on the Ins(1,4,5)P3 binding. However, soybean phospholipids asolectin and phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] strongly inhibited the binding activity. PtdIns(4,5)P2 inhibited the activity competitively with a half-maximal inhibitory concentration of 30 μg/ml. The partially purified Ins(1,4,5)P3 receptor was reconstituted into proteoliposomes. Fluorescence measurements using Quin 2 indicated that Ins(1,4,5)P3 stimulated Ca2+ influx into the proteoliposomes. The EC50 of Ins(1,4,5)P3 on Ca2+ influx was 50 nM. This result strongly suggest that Ins(1,4,5)P3 binding protein of liver microsomes acts as a physiological Ins(1,4,5)P3 receptor/Ca2+ channel.
UR - http://www.scopus.com/inward/record.url?scp=0026606077&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026606077&partnerID=8YFLogxK
U2 - 10.1093/oxfordjournals.jbchem.a123793
DO - 10.1093/oxfordjournals.jbchem.a123793
M3 - Article
C2 - 1319993
AN - SCOPUS:0026606077
SN - 0021-924X
VL - 111
SP - 546
EP - 552
JO - Journal of biochemistry
JF - Journal of biochemistry
IS - 4
ER -