Paramagnetic 13C and 13N NMR analyses of cyanide- (13C13N-) ligated ferric peroxidases: The push effect, not pull effect, modulates the compound formation rate

Daisuke Nonaka, Hiroyuki Wariishi, Hiroshi Fujii

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

Paramagnetic 13C and 15N NMR spectroscopy of heme-bound cyanide (13C15N) was utilized to quantitatively distinguish the electron donor effect (the push effect) from the proximal histidine and hydrogen-bonding effect (the pull effect) from the distal amino acid residues in cytochrome c peroxidase (CcP), ascorbate peroxidase (APX), lignin peroxidase (LiP), and manganese peroxidase (MnP). Paramagnetic 13C NMR signals of heme-bound 13C15N of these peroxidases were observed in a wide range, -3501 ppm (CcP), -3563 ppm (APX), -3823 ppm (MnP), and -3826 ppm (LiP), while paramagnetic 15N NMR signals of those were detected in a narrow range, 574 ppm (ARP), 605 ppm (CcP), 626 ppm (LiP), and 654 ppm (MnP). Detailed analysis, combined with the previous results for horseradish peroxidase and Arthromyces ramosus peroxidase, indicated that the push effect is quite different among these peroxidases while the pull effect is similar. More importantly, a strong correlation between the 13C NMR shift (the push effect) and the compound I formation rate was observed, indicating that the push effect causes a variation in the compound I formation rate. Comparison of the 13C and 15N NMR results of these peroxidases with their crystal structures suggests that the orientation of the proximal imidazole plane to the heme N - Fe - N axis controls the push effect and the compound I formation rate of peroxidase.

Original languageEnglish
Pages (from-to)898-905
Number of pages8
JournalBiochemistry
Volume48
Issue number5
DOIs
Publication statusPublished - Feb 10 2009

All Science Journal Classification (ASJC) codes

  • Biochemistry

Fingerprint

Dive into the research topics of 'Paramagnetic 13C and 13N NMR analyses of cyanide- (13C13N-) ligated ferric peroxidases: The push effect, not pull effect, modulates the compound formation rate'. Together they form a unique fingerprint.

Cite this