TY - JOUR
T1 - Paramagnetic 13C and 13N NMR analyses of cyanide- (13C13N-) ligated ferric peroxidases
T2 - The push effect, not pull effect, modulates the compound formation rate
AU - Nonaka, Daisuke
AU - Wariishi, Hiroyuki
AU - Fujii, Hiroshi
N1 - Copyright:
Copyright 2009 Elsevier B.V., All rights reserved.
PY - 2009/2/10
Y1 - 2009/2/10
N2 - Paramagnetic 13C and 15N NMR spectroscopy of heme-bound cyanide (13C15N) was utilized to quantitatively distinguish the electron donor effect (the push effect) from the proximal histidine and hydrogen-bonding effect (the pull effect) from the distal amino acid residues in cytochrome c peroxidase (CcP), ascorbate peroxidase (APX), lignin peroxidase (LiP), and manganese peroxidase (MnP). Paramagnetic 13C NMR signals of heme-bound 13C15N of these peroxidases were observed in a wide range, -3501 ppm (CcP), -3563 ppm (APX), -3823 ppm (MnP), and -3826 ppm (LiP), while paramagnetic 15N NMR signals of those were detected in a narrow range, 574 ppm (ARP), 605 ppm (CcP), 626 ppm (LiP), and 654 ppm (MnP). Detailed analysis, combined with the previous results for horseradish peroxidase and Arthromyces ramosus peroxidase, indicated that the push effect is quite different among these peroxidases while the pull effect is similar. More importantly, a strong correlation between the 13C NMR shift (the push effect) and the compound I formation rate was observed, indicating that the push effect causes a variation in the compound I formation rate. Comparison of the 13C and 15N NMR results of these peroxidases with their crystal structures suggests that the orientation of the proximal imidazole plane to the heme N - Fe - N axis controls the push effect and the compound I formation rate of peroxidase.
AB - Paramagnetic 13C and 15N NMR spectroscopy of heme-bound cyanide (13C15N) was utilized to quantitatively distinguish the electron donor effect (the push effect) from the proximal histidine and hydrogen-bonding effect (the pull effect) from the distal amino acid residues in cytochrome c peroxidase (CcP), ascorbate peroxidase (APX), lignin peroxidase (LiP), and manganese peroxidase (MnP). Paramagnetic 13C NMR signals of heme-bound 13C15N of these peroxidases were observed in a wide range, -3501 ppm (CcP), -3563 ppm (APX), -3823 ppm (MnP), and -3826 ppm (LiP), while paramagnetic 15N NMR signals of those were detected in a narrow range, 574 ppm (ARP), 605 ppm (CcP), 626 ppm (LiP), and 654 ppm (MnP). Detailed analysis, combined with the previous results for horseradish peroxidase and Arthromyces ramosus peroxidase, indicated that the push effect is quite different among these peroxidases while the pull effect is similar. More importantly, a strong correlation between the 13C NMR shift (the push effect) and the compound I formation rate was observed, indicating that the push effect causes a variation in the compound I formation rate. Comparison of the 13C and 15N NMR results of these peroxidases with their crystal structures suggests that the orientation of the proximal imidazole plane to the heme N - Fe - N axis controls the push effect and the compound I formation rate of peroxidase.
UR - http://www.scopus.com/inward/record.url?scp=61449094886&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=61449094886&partnerID=8YFLogxK
U2 - 10.1021/bi802030a
DO - 10.1021/bi802030a
M3 - Article
C2 - 19187033
AN - SCOPUS:61449094886
SN - 0006-2960
VL - 48
SP - 898
EP - 905
JO - Biochemistry
JF - Biochemistry
IS - 5
ER -