TY - JOUR
T1 - Pamidronate decreases bilirubin-impaired cell death and improves dentinogenic dysfunction of stem cells from human deciduous teeth
AU - Yamaza, Haruyoshi
AU - Sonoda, Soichiro
AU - Nonaka, Kazuaki
AU - Kukita, Toshio
AU - Yamaza, Takayoshi
N1 - Funding Information:
We would like to thank Editage (http://www.editage.jp) for the English language editing. This work was supported by grants from the Japan Society for the Promotion of Science, including Grants-in-Aid for Scientific Research (B) (Grant Number JP25293405 to TY) and Scientific Research (C) (Grant Number JP16K11806 to HY).
Publisher Copyright:
© 2018 The Author(s).
PY - 2018/11/8
Y1 - 2018/11/8
N2 - Background: Hyperbilirubinemia that occurs in pediatric liver diseases such as biliary atresia can result in the development of not only jaundice in the brain, eyes, and skin, but also tooth abnormalities including green pigmentation and dentin hypoplasia in the developing teeth. However, hyperbilirubinemia-induced tooth impairments remain after liver transplantation. No effective dental management to prevent hyperbilirubinemia-induced tooth impairments has been established. Methods: In this study, we focused on pamidronate, which is used to treat pediatric osteopenia, and investigated its effects on hyperbilirubinemia-induced tooth impairments. We cultured stem cells from human exfoliated deciduous teeth (SHED) under high and low concentrations of unconjugated bilirubin in the presence or absence of pamidronate. We then analyzed the effects of pamidronate on the cell death, associated signal pathways, and dentinogenic function in SHED. Results: We demonstrated that a high concentration of unconjugated bilirubin induced cell death in SHED via the mitochondrial pathway, and this was associated with the suppression of AKT and extracellular signal-related kinase 1 and 2 (ERK1/2) signal pathways and activation of the nuclear factor kappa B (NF-κB) signal pathway. The high concentration of unconjugated bilirubin impaired the in vitro and in vivo dentinogenic capacity of SHED, but not the low concentration. We then demonstrated that pamidronate decreased the bilirubin-induced cell death in SHED via the altered AKT, ERK1/2, and NF-κB signal pathways and recovered the bilirubin-impaired dentinogenic function of SHED. Conclusions: Our findings suggest that pamidronate may prevent tooth abnormalities in pediatric patients with hyperbilirubinemia.
AB - Background: Hyperbilirubinemia that occurs in pediatric liver diseases such as biliary atresia can result in the development of not only jaundice in the brain, eyes, and skin, but also tooth abnormalities including green pigmentation and dentin hypoplasia in the developing teeth. However, hyperbilirubinemia-induced tooth impairments remain after liver transplantation. No effective dental management to prevent hyperbilirubinemia-induced tooth impairments has been established. Methods: In this study, we focused on pamidronate, which is used to treat pediatric osteopenia, and investigated its effects on hyperbilirubinemia-induced tooth impairments. We cultured stem cells from human exfoliated deciduous teeth (SHED) under high and low concentrations of unconjugated bilirubin in the presence or absence of pamidronate. We then analyzed the effects of pamidronate on the cell death, associated signal pathways, and dentinogenic function in SHED. Results: We demonstrated that a high concentration of unconjugated bilirubin induced cell death in SHED via the mitochondrial pathway, and this was associated with the suppression of AKT and extracellular signal-related kinase 1 and 2 (ERK1/2) signal pathways and activation of the nuclear factor kappa B (NF-κB) signal pathway. The high concentration of unconjugated bilirubin impaired the in vitro and in vivo dentinogenic capacity of SHED, but not the low concentration. We then demonstrated that pamidronate decreased the bilirubin-induced cell death in SHED via the altered AKT, ERK1/2, and NF-κB signal pathways and recovered the bilirubin-impaired dentinogenic function of SHED. Conclusions: Our findings suggest that pamidronate may prevent tooth abnormalities in pediatric patients with hyperbilirubinemia.
UR - http://www.scopus.com/inward/record.url?scp=85056411213&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056411213&partnerID=8YFLogxK
U2 - 10.1186/s13287-018-1042-7
DO - 10.1186/s13287-018-1042-7
M3 - Article
C2 - 30409185
AN - SCOPUS:85056411213
SN - 1757-6512
VL - 9
JO - Stem Cell Research and Therapy
JF - Stem Cell Research and Therapy
IS - 1
M1 - 303
ER -