TY - JOUR
T1 - P2Y12 receptors in spinal microglia are required for neuropathic pain after peripheral nerve injury
AU - Tozaki-Saitoh, Hidetoshi
AU - Tsuda, Makoto
AU - Miyata, Hiroyuki
AU - Ueda, Kazuaki
AU - Kohsaka, Shinichi
AU - Inoue, Kazuhide
PY - 2008/5/7
Y1 - 2008/5/7
N2 - Extracellular nucleotides have been implicated as signaling molecules used by microglia to sense adverse physiological conditions, such as neuronal damage. They act through purinoceptors, especially the G-protein-coupled P2Y receptor P2Y12R. Emerging evidence has indicated that activated spinal microglia responding to nerve injury are key cellular intermediaries in the resulting highly debilitating chronic pain state, namely neuropathic pain. However, the role of microglial P2Y12Rs in neuropathic pain remains unknown. Here, we show that the level of P2Y12R mRNA expression was markedly increased in the spinal cord ipsilateral to the nerve injury and that this expression was highly restricted to ionized binding calcium adapter molecule 1-positive microglia. An increase in the immunofluorescence of P2Y 12R protein in the ipsilateral spinal cord was also observed after nerve injury, and P2Y12R-positive cells were double labeled with the microglial marker OX-42. Blocking spinal P2Y12R by the intrathecal administration of its antagonist AR-C69931MX prevented the development of tactile allodynia (pain hypersensitivity to innocuous stimuli), a hallmark of neuropathic pain syndrome. Furthermore, mice lacking P2ry12 (P2ry12-/-) displayed impaired tactile allodynia after nerve injury without any change in basal mechanical sensitivity. Moreover, a single intrathecal administration of AR-C69931MX or oral administration of clopidogrel (a P2Y12R blocker clinically in use) to nerve-injured rats produced a striking alleviation of existing tactile allodynia. Together, our findings indicate that activation of P2Y12Rs in spinal microglia may be a critical event in the pathogenesis of neuropathic pain and suggest that blocking microglial P2Y12R might be a viable therapeutic strategy for treating neuropathic pain.
AB - Extracellular nucleotides have been implicated as signaling molecules used by microglia to sense adverse physiological conditions, such as neuronal damage. They act through purinoceptors, especially the G-protein-coupled P2Y receptor P2Y12R. Emerging evidence has indicated that activated spinal microglia responding to nerve injury are key cellular intermediaries in the resulting highly debilitating chronic pain state, namely neuropathic pain. However, the role of microglial P2Y12Rs in neuropathic pain remains unknown. Here, we show that the level of P2Y12R mRNA expression was markedly increased in the spinal cord ipsilateral to the nerve injury and that this expression was highly restricted to ionized binding calcium adapter molecule 1-positive microglia. An increase in the immunofluorescence of P2Y 12R protein in the ipsilateral spinal cord was also observed after nerve injury, and P2Y12R-positive cells were double labeled with the microglial marker OX-42. Blocking spinal P2Y12R by the intrathecal administration of its antagonist AR-C69931MX prevented the development of tactile allodynia (pain hypersensitivity to innocuous stimuli), a hallmark of neuropathic pain syndrome. Furthermore, mice lacking P2ry12 (P2ry12-/-) displayed impaired tactile allodynia after nerve injury without any change in basal mechanical sensitivity. Moreover, a single intrathecal administration of AR-C69931MX or oral administration of clopidogrel (a P2Y12R blocker clinically in use) to nerve-injured rats produced a striking alleviation of existing tactile allodynia. Together, our findings indicate that activation of P2Y12Rs in spinal microglia may be a critical event in the pathogenesis of neuropathic pain and suggest that blocking microglial P2Y12R might be a viable therapeutic strategy for treating neuropathic pain.
UR - http://www.scopus.com/inward/record.url?scp=44949147139&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44949147139&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.0323-08.2008
DO - 10.1523/JNEUROSCI.0323-08.2008
M3 - Article
C2 - 18463248
AN - SCOPUS:44949147139
SN - 0270-6474
VL - 28
SP - 4949
EP - 4956
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 19
ER -