Oxide ion conductivity in La0.8Sr0.2Ga0.8Mg0.2-xNix O3 perovskite oxide and application for the electrolyte of solid oxide fuel cells

T. Ishihara, T. Shibayama, H. Nishiguchi, Y. Takita

Research output: Contribution to journalArticlepeer-review

61 Citations (Scopus)

Abstract

Although hole conduction was present, it was found that doping with Ni was effective in improving the oxide ion conductivity in La0.8Sr0.2Ga0.8Mg0.2O3 based perovskite oxides. Considering the ionic transport number and the electrical conductivity, the optimized composition for Ni doped samples was La0.8Sr0.2Ga0.8Mg0.13 Ni0.07O3 (LSGMN). In t composition, electrical conductivity was found to be virtually independent of the oxygen partial pressure from 1 to 10-21 atm. Consequently, the oxide ion conductivity was still dominant in this optimized composition. In agreement with the improved oxide ionic conductivity, the power density of the solid oxide fuel cell using LaGaO3 as an electrolyte increased by doping with a small amount of Ni on the Ga site. In particular, the power density of 224 mW/cm2 at 873 K, which is the maximum power density in the cells using LaGaO3 based oxide as the electrolyte, was attained using LSGMN in spite of the use of electrolyte plates with a thickness of 0.5 mm. Therefore, LSGMN is highly attractive for the electrolyte material of low temperature operating SOFCs.

Original languageEnglish
Pages (from-to)1125-1131
Number of pages7
JournalJournal of Materials Science
Volume36
Issue number5
DOIs
Publication statusPublished - Mar 1 2001
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Oxide ion conductivity in La0.8Sr0.2Ga0.8Mg0.2-xNix O3 perovskite oxide and application for the electrolyte of solid oxide fuel cells'. Together they form a unique fingerprint.

Cite this