Abstract
Oxidative coupling of methane using carbon dioxide (CO2-OCM) as an oxidant was conducted over several La- and Zr-based catalysts in an electric field at low external temperature of 423 K. Higher catalytic activity was obtained than in a conventional catalytic reaction over 10 mol% lanthanum-doped zirconia (La-ZrO2) in the electric field. Although the catalytic activity for the CO2-OCM was low over the La-ZrO2 at 1173 K without the application of the electric field, the electric field promoted catalytic activity even at 423 K external temperature. We optimized the amount of doping-La in the La-ZrO2 system, and characterized the effect of doping-La with XRD measurement. From these examinations, 5 mol% La-ZrO 2 catalyst showed the highest activity. High catalytic activity was provided by the synergistic effect of the La-cation, tetragonal-ZrO2, and the electric field.
Original language | English |
---|---|
Pages (from-to) | 879-881 |
Number of pages | 3 |
Journal | Fuel |
Volume | 107 |
DOIs | |
Publication status | Published - 2013 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Chemical Engineering(all)
- Fuel Technology
- Energy Engineering and Power Technology
- Organic Chemistry