Abstract
The number of minimally invasive surgeries has increased rapidly with the development of endoscopic devices and procedures. Endoscopic surgical procedures are usually performed within a body cavity such as the abdomen or chest and visualized with laparoscopy or thoracoscopy, with two-dimensional conventional scopes. In 1987, the initial laparoscopic cholecystectomy was performed (Reynolds, JSLS 5(1):89-94, 2001). Then, the implications for endoscopic surgery have continuously expanded, and endoscopic surgery is currently the standard in many surgical fields. Advantages in endoscopic surgery are less postoperative pain, shorter hospital stays, and an earlier return to daily activities for many patients. However, for endoscopic procedures, surgeons need several skills that have never been needed for conventional open surgery. The surgeon needs to coordinate his/her eyes and hands with mentally interpreting a two-dimensional environment as a three-dimensional one. Furthermore, the surgeon needs to acquire a skillful manner using long-shaft instruments. Therefore, performing endoscopic procedures is more physically and mentally demanding for most of the surgeons than performing an open procedure. Recently, to support such minimum invasive surgery, a robotic system was developed. A robotic system has already resolved some of the problems related to laparoscopic surgery. The robotic system provides surgeons with super vision and super hand techniques, which have remarkably changed surgery in various fields (Hashizume et al., Surgery 131:S330-S333, 2002; Ballantyne, Surg Endosc 16(10):1389-1402, 2002). Generally, robotic system provides master manipulators, which the surgeon can use to control the movements of patient-side arms and hands with the surgical instruments and the endoscope. The surgeon looks at a display monitor that presents images obtained through an endoscopic camera inside the patient's body. The surgeon looks down into the monitor on his hands as if looking into the surgical field. The surgeon holds the control handles with his left and right hands, respectively. When the surgeon moves the manipulators on the surgeon's site, the patient-side manipulators closely follow the input motions. This master-slave system makes it possible for surgeons to perform more precise surgical procedures than those available in conventional laparoscopic surgery. Although clinical benefits of robotic system for most surgical procedures remain to be proven, robotic surgery has already been spreading and available worldwide in the various surgical fields.
Original language | English |
---|---|
Title of host publication | Robotic Surgery |
Publisher | Springer Japan |
Pages | 1-7 |
Number of pages | 7 |
Volume | 9784431548539 |
ISBN (Electronic) | 9784431548539 |
ISBN (Print) | 4431548521, 9784431548522 |
DOIs | |
Publication status | Published - Mar 1 2014 |
All Science Journal Classification (ASJC) codes
- Medicine(all)