Overall conductivity and electromotive force of SrZr0:9Yb0:1O3–acell system supplied with moist CH4

Satoshi Fukada, Shigenori Suemori, Ken Onoda

Research output: Contribution to journalArticlepeer-review

Abstract

A proton-conducting ceramic cell for recovering tritium from process streams was investigated for its application to a fusion reactor system. The ceramic cell tested here was composed of a SrZr0:9Yb0.1O3–atube, one end of which was closed, and Ni/SiO2and NiO/SiO2porous electrodes. Its anode was supplied with moist CH4or H2and its cathode with moist O2. All of the j-V curves obtained by a direct-current method were correlated to the relation V = E 0− jd/σ at 600–700°C regardless of the two different conditions of the CH4+ H2O and H2+ H2O supply. The rate-controlling step of charged hydrogen ion transfer was determined from the dependences of the overall conductivity σ and the electromotive force E 0on the anode H2O partial pressure and temperature. The E 0value under the condition of the CH4+ H2O supply was affected by the diffusion of reaction products of CH4+ H2O = CO + 3H2through the porous anode. On the other hand, the σ value was limited by the oxygen reduction rate at the cathode interface between the ceramic and the Ni electrode regardless of the different conditions between CH4+ H2O and H2+ H2O. These results were consistent with our results obtained by an alternating-current method. The activation energy of the overall conductivity was 60 kJ/mol.

Original languageEnglish
Pages (from-to)1324-1329
Number of pages6
Journaljournal of nuclear science and technology
Volume44
Issue number10
DOIs
Publication statusPublished - Oct 2007

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Nuclear Energy and Engineering

Fingerprint

Dive into the research topics of 'Overall conductivity and electromotive force of SrZr0:9Yb0:1O3–acell system supplied with moist CH4'. Together they form a unique fingerprint.

Cite this