Abstract
A proton-conducting ceramic cell for recovering tritium from process streams was investigated for its application to a fusion reactor system. The ceramic cell tested here was composed of a SrZr0:9Yb0.1O3–atube, one end of which was closed, and Ni/SiO2and NiO/SiO2porous electrodes. Its anode was supplied with moist CH4or H2and its cathode with moist O2. All of the j-V curves obtained by a direct-current method were correlated to the relation V = E 0− jd/σ at 600–700°C regardless of the two different conditions of the CH4+ H2O and H2+ H2O supply. The rate-controlling step of charged hydrogen ion transfer was determined from the dependences of the overall conductivity σ and the electromotive force E 0on the anode H2O partial pressure and temperature. The E 0value under the condition of the CH4+ H2O supply was affected by the diffusion of reaction products of CH4+ H2O = CO + 3H2through the porous anode. On the other hand, the σ value was limited by the oxygen reduction rate at the cathode interface between the ceramic and the Ni electrode regardless of the different conditions between CH4+ H2O and H2+ H2O. These results were consistent with our results obtained by an alternating-current method. The activation energy of the overall conductivity was 60 kJ/mol.
Original language | English |
---|---|
Pages (from-to) | 1324-1329 |
Number of pages | 6 |
Journal | journal of nuclear science and technology |
Volume | 44 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 2007 |
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics
- Nuclear Energy and Engineering