Abstract
The nematic-isotropic transition behavior of semiflexible polymers in the bulk was studied on the basis of three typical models of orientation-dependent interactions (the Onsager-Kimura-type mean-field model, the lattice version of the Onsager model, and the Maier-Saupe-type soft interaction model) and two polymer models (the wormlike chain and the freely jointed chain with randomly distributed joints). The critical value of x = q/D required to stabilize the nematic phase was evaluated as a function of m = L/q for various combinations of the models, where L, q, and D are the contour length, the persistence length, and the diameter, respectively, of the chain. Even though x and x∞, the value of x at L → ∞, strongly depended on the models, the predicted ln(x/x∞) vs m relations were reasonably model-insensitive, offering a hopefully quantitative interpretation for the known dependence of the transition temperature Ti on chain length. (Note that q and hence x is a function of temperature.) Like Ti, the enthalpy change of transition was predicted to increase with L, approaching a constant value for large L. This behavior originates in the conformational change of semiflexible polymers and is not a characteristic of rigid rodlike molecules.
Original language | English |
---|---|
Pages (from-to) | 3387-3393 |
Number of pages | 7 |
Journal | Macromolecules |
Volume | 28 |
Issue number | 9 |
DOIs | |
Publication status | Published - Apr 1 1995 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Organic Chemistry
- Polymers and Plastics
- Inorganic Chemistry
- Materials Chemistry