Orientation-Dependent Interactions in Polymer Systems. 4. Chain-Length Dependence of the Nematic-Isotropic Transition Behavior of Thermotropic Semiflexible Polymers

Takeshi Fukuda, Akihiko Takada, Yoshinobu Tsujii, Takeaki Miyamoto, Akihiko Takada

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

The nematic-isotropic transition behavior of semiflexible polymers in the bulk was studied on the basis of three typical models of orientation-dependent interactions (the Onsager-Kimura-type mean-field model, the lattice version of the Onsager model, and the Maier-Saupe-type soft interaction model) and two polymer models (the wormlike chain and the freely jointed chain with randomly distributed joints). The critical value of x = q/D required to stabilize the nematic phase was evaluated as a function of m = L/q for various combinations of the models, where L, q, and D are the contour length, the persistence length, and the diameter, respectively, of the chain. Even though x and x, the value of x at L → ∞, strongly depended on the models, the predicted ln(x/x) vs m relations were reasonably model-insensitive, offering a hopefully quantitative interpretation for the known dependence of the transition temperature Ti on chain length. (Note that q and hence x is a function of temperature.) Like Ti, the enthalpy change of transition was predicted to increase with L, approaching a constant value for large L. This behavior originates in the conformational change of semiflexible polymers and is not a characteristic of rigid rodlike molecules.

Original languageEnglish
Pages (from-to)3387-3393
Number of pages7
JournalMacromolecules
Volume28
Issue number9
DOIs
Publication statusPublished - Apr 1 1995
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Organic Chemistry
  • Polymers and Plastics
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Orientation-Dependent Interactions in Polymer Systems. 4. Chain-Length Dependence of the Nematic-Isotropic Transition Behavior of Thermotropic Semiflexible Polymers'. Together they form a unique fingerprint.

Cite this