Abstract
Optics has been playing crucial roles in security applications ranging from authentication and watermarks to anti-counterfeiting. However, since the fundamental physical principle involves optical far-fields, or propagating light, diffraction of light causes severe difficulties, for example in device scaling and system integration. Moreover, conventional security technologies in use today have been facing increasingly stringent demands to safeguard against threats such as counterfeiting of holograms, requiring innovative physical principles and technologies to overcome their limitations. Nanophotonics, which utilizes interactions between light and matter at the nanometer scale via optical near-field interactions, can break through the diffraction limit of conventional propagating light. Moreover, nanophotonics has some unique physical attributes, such as localized optical energy transfer and the hierarchical nature of optical near-field interactions, which pave the way for novel security functionalities. This paper reviews the physical principles and describes some experimental demonstrations of systems based on nanophotonics with respect to security applications such as tamper resistance against non-invasive and invasive attacks, hierarchical information retrieval, hierarchical holograms, authentication, and traceability.
Original language | English |
---|---|
Article number | 094002 |
Journal | Journal of Optics (United Kingdom) |
Volume | 14 |
Issue number | 9 |
DOIs | |
Publication status | Published - Sept 2012 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics