Online density estimation of bradley-terry models

Issei Matsumoto, Kohei Hatano, Eiji Takimoto

Research output: Contribution to journalConference articlepeer-review


We consider an online density estimation problem for the Bradley-Terry model, where each model parameter defines the probability of a match result between any pair in a set of n teams. The problem is hard because the loss function (i.e., the negative log-likelihood function in our problem setting) is not convex. To avoid the non-convexity, we can change parameters so that the loss function becomes convex with respect to the new parameter. But then the radius K of the reparameterized domain may be infinite, where K depends on the outcome sequence. So we put a mild assumption that guarantees that K is finite. We can thus employ standard online convex optimization algorithms, namely OGD and ONS, over the reparameterized domain, and get regret bounds O(n 1/2 (lnK) √ T) and O(n 3/2K ln T), respectively, where T is the horizon of the game. The bounds roughly means that OGD is better when K is large while ONS is better when K is small. But how large can K be? We show that K can be as large as θ(Tn-1), which implies that the worst case regret bounds of OGD and ONS are O(n 3/2 √ T ln T) and Õ(n 3/2 (T)n-1), respectively. We then propose a version of Follow the Regularized Leader, whose regret bound is close to the minimum of those of OGD and ONS. In other words, our algorithm is competitive with both for a wide range of values of K. In particular, our algorithm achieves the worst case regret bound O(n 5/2 T 1/3 ln T), which is slightly better than OGD with respect to T. In addition, our algorithm works without the knowledge K, which is a practical advantage.

Original languageEnglish
JournalJournal of Machine Learning Research
Issue number2015
Publication statusPublished - 2015
Event28th Conference on Learning Theory, COLT 2015 - Paris, France
Duration: Jul 2 2015Jul 6 2015

All Science Journal Classification (ASJC) codes

  • Software
  • Control and Systems Engineering
  • Statistics and Probability
  • Artificial Intelligence


Dive into the research topics of 'Online density estimation of bradley-terry models'. Together they form a unique fingerprint.

Cite this