One dimensional polymeric photonic crystal doped with second-order nonlinear optical chromophore

Azusa Inoue, Shin ichiro Inoue, Shiyoshi Yokoyama, Keisuke Kojima, Kei Yasui, Masaaki Ozawa, Keisuke Odoi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)


Organic nonlinear optical (NLO) materials have attracted much interest for their potential applications over the past two decades mainly because of their faster electronic response and larger optical nonlinearities than the conventional inorganic materials. Especially, electro-optic (EO) polymers have been promising candidates for fast and broadband EO modulators as a result of the development of the 2nd-order NLO chromophore. In this manuscript, we report fabrication and design of one dimensional (1D) polymeric photonic crystals (PCs) to additionally enhance the optical nonlinearities of the organic NLO materials. We fabricated polymeric high-reflection mirrors for 1D PCs by a simple alternatively spin-coating two polymers under control of their optical thickness, in which a novel polymer was applied to the higher refractive index layer. We also designed defect-mode 1D polymeric PC for effective light-localization in the defect layer and discussed their effect for enhancement of the 2nd-order optical nonlinearities.

Original languageEnglish
Title of host publicationOrganic Photonic Materials and Devices XI
Publication statusPublished - 2009
EventOrganic Photonic Materials and Devices XI - San Jose, CA, United States
Duration: Jan 27 2009Jan 29 2009

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X


OtherOrganic Photonic Materials and Devices XI
Country/TerritoryUnited States
CitySan Jose, CA

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'One dimensional polymeric photonic crystal doped with second-order nonlinear optical chromophore'. Together they form a unique fingerprint.

Cite this