On the algebra of fluctuation in quantum spin chains

    Research output: Contribution to journalArticlepeer-review

    19 Citations (Scopus)


    We present a proof of the central limit theorem for a pair of mutually non-commuting operators in mixing quantum spin chains. The operators are not necessarily strictly local but quasi-local. As a corollary we obtain a direct construction of the time evolution of the algebra of normal fluctuation for Gibbs states of finite range interactions on a one-dimensional lattice. We show that the state of the algebra of normal fluctuation satisfies the β-KMS condition if the microscopic state is a β-KMS state. We show that any mixing finitely correlated state satisfies our assumption for the central limit theorem.

    Original languageEnglish
    Pages (from-to)63-83
    Number of pages21
    JournalAnnales Henri Poincare
    Issue number1
    Publication statusPublished - 2003

    All Science Journal Classification (ASJC) codes

    • Statistical and Nonlinear Physics
    • Nuclear and High Energy Physics
    • Mathematical Physics


    Dive into the research topics of 'On the algebra of fluctuation in quantum spin chains'. Together they form a unique fingerprint.

    Cite this