On Softwarization of Intelligence in 6G Networks for Ultra-Fast Optimal Policy Selection: Challenges and Opportunities

Sherief Hashima, Zubair Md Fadlullah, Mostafa M. Fouda, Ehab Mahmoud Mohamed, Kohei Hatano, Basem M. Elhalawany, Mohsen Guizani

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)


The emerging Sixth Generation (6G) communication networks promising 100 to 1000 Gb/s rates and ultra-low latency (1 millisecond) are anticipated to have native, embedded Artificial Intelligence (AI) capability to support a myriad of services, such as Holographic Type Communications (HTC), tactile Internet, remote surgery, etc. However, these services require ultra-reliability, which is highly impacted by the dynamically changing environment of 6G heterogeneous tiny cells, whereby static AI solutions fitting all scenarios and devices are impractical. Hence, this article introduces a novel concept called the softwarization of intelligence in 6G networks to select the most ideal, ultra-fast optimal policy based on the highly varying channel conditions, traffic demand, user mobility, and so forth. Our envisioned concept is exemplified in a Multi-Armed Bandit (MAB) framework and evaluated within a use case of two simultaneous scenarios (i.e., Neighbor Discovery and Selection (NDS) in a Device-to-Device (D2D) network and aerial gateway selection in an Unmanned Aerial Vehicle (UAV)-based under-served area network). Furthermore, our concept is evaluated through extensive computer-based simulations that indicate encouraging performance. Finally, related challenges and future directions are highlighted.

Original languageEnglish
Pages (from-to)190-197
Number of pages8
JournalIEEE Network
Issue number2
Publication statusPublished - Mar 1 2023

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems
  • Hardware and Architecture
  • Computer Networks and Communications


Dive into the research topics of 'On Softwarization of Intelligence in 6G Networks for Ultra-Fast Optimal Policy Selection: Challenges and Opportunities'. Together they form a unique fingerprint.

Cite this