ON MINI-BATCH TRAINING WITH VARYING LENGTH TIME SERIES

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In real-world time series recognition applications, it is possible to have data with varying length patterns. However, when using artificial neural networks (ANN), it is standard practice to use fixed-sized mini-batches. To do this, time series data with varying lengths are typically normalized so that all the patterns are the same length. Normally, this is done using zero padding or truncation without much consideration. We propose a novel method of normalizing the lengths of the time series in a dataset by exploiting the dynamic matching ability of Dynamic Time Warping (DTW). In this way, the time series lengths in a dataset can be set to a fixed size while maintaining features typical to the dataset. In the experiments, all 11 datasets with varying length time series from the 2018 UCR Time Series Archive are used. We evaluate the proposed method by comparing it with 18 other length normalization methods on a Convolutional Neural Network (CNN), a Long-Short Term Memory network (LSTM), and a Bidirectional LSTM (BLSTM). The code is publicly available at https://github.com/uchidalab/vary length time series.

Original languageEnglish
Title of host publication2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4483-4487
Number of pages5
ISBN (Electronic)9781665405409
DOIs
Publication statusPublished - 2022
Event47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Virtual, Online, Singapore
Duration: May 23 2022May 27 2022

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2022-May
ISSN (Print)1520-6149

Conference

Conference47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022
Country/TerritorySingapore
CityVirtual, Online
Period5/23/225/27/22

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'ON MINI-BATCH TRAINING WITH VARYING LENGTH TIME SERIES'. Together they form a unique fingerprint.

Cite this