Ocean mixed layer processes in the Pacific Decadal Oscillation in coupled general circulation models

Bo Young Yim, Yign Noh, Sang Wook Yeh, Jong Seong Kug, Hong Sik Min, Bo Qiu

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

It is investigated how the Pacific Decadal Oscillation (PDO) is simulated differently among various coupled general circulation models (CGCMs), and how it is related to the heat budget of the simulated ocean mixed layer, which includes the surface heat flux and ocean heat transport. For this purpose the dataset of the climate of the 20th Century experiment (20C3M) from nine CGCMs reported to IPCC's AR4 are used, while the MRI and MIROC models are examined in detail. Detailed analyses of these two CGCMs reveal that the PDO is mainly affected by ocean heat transport rather than surface heat flux, in particular in the MRI model which has a larger contribution of ocean heat transport to the heat budget. It is found that the ocean heat transport due to Ekman advection versus geostrophic advection contributes differently to the PDO in the western and central North Pacific. Specifically, the strength of PDO tends to be larger for CGCMs with a larger ocean heat transport in the region.

Original languageEnglish
Pages (from-to)1407-1417
Number of pages11
JournalClimate Dynamics
Volume41
Issue number5-6
DOIs
Publication statusPublished - Sept 2013
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Ocean mixed layer processes in the Pacific Decadal Oscillation in coupled general circulation models'. Together they form a unique fingerprint.

Cite this