Numerical simulations of the ignition of n-heptane droplets in the transition diameter range from heterogeneous to homogeneous ignition

Osamu Moriue, Masato Mikami, Naoya Kojima, Christian Eigenbrod

Research output: Contribution to conferencePaperpeer-review

Abstract

Spontaneous ignition of single n-heptane droplets in a constant volume filled with air was numerically simulated with the spherical symmetry. The numerical model was fully transient. It continues calculation even after the droplet has completely vaporized, and therefore can predict pre-vaporized ignition. Droplet was initially at room temperature, and its diameter was 1-100 μm. When the overall equivalence ratio (φ) was fixed to be sufficiently large, there was no ignition limit in terms of initial droplet diameter (d0), and the ignition delay took a minimum value at certain d0. In such a case, transition from the heterogeneous ignition to the homogeneous ignition with decreasing d0 was observed. When d0 was fixed to be so small that the ignition would not occur in an infinite volume of air, the ignition delay took a minimum value at certain φ, which was less than unity. Two-stage ignition behavior was studied with this model. Ignition delay of a cool flame had the dependence on d0 that was similar to that of ignition delay of a hot flame when φ is unity. When φ was almost zero, the ignition limit for cool flame in terms of d0 was not identified unlike that for hot flame. This is an abstract of a paper presented at the 30th International Symposium on Combustion (Chicago, IL 7/25-30/2004).

Original languageEnglish
Pages21
Number of pages1
Publication statusPublished - 2004
Externally publishedYes
Event30th International Symposium on Combustion, Abstracts of Symposium Papers - Chicago, IL, United States
Duration: Jul 25 2004Jul 30 2004

Other

Other30th International Symposium on Combustion, Abstracts of Symposium Papers
Country/TerritoryUnited States
CityChicago, IL
Period7/25/047/30/04

All Science Journal Classification (ASJC) codes

  • Engineering(all)

Fingerprint

Dive into the research topics of 'Numerical simulations of the ignition of n-heptane droplets in the transition diameter range from heterogeneous to homogeneous ignition'. Together they form a unique fingerprint.

Cite this