Numerical simulation for synchronization of excitatory action between beating cells

H. Hamada, A. Tada, K. Iwamoto, M. Okamoto

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

The isolated beating cells have different intrinsic excitatory period interval with fluctuation. The excitatory conduction between the beating cells synchronizes with time when such beating cells formed a cellular clot, which eventually shows single excitatory period interval. However, as of yet, it is not clear how the beating cell regulates the excitatory action of other cells. On the other hand, FitzHugh, Nagumo et al. and Hodgkin et al. proposed a kinetic mathematical model which made it possible to realize the excitatory action numerically. The numerical simulation makes it possible to analyze several effects of the excitatory period interval on the synchronization based on the experimentally observed data, so it is useful for elucidation of a mechanism of the synchronization. In the current study, with employing a kinetic mathematical model for the excitatory conduction, we developed a novel numerical simulator for which excitatory wave propagates on a two-dimensional cellular matrix, and numerically analyzed an interference of excitatory conduction. In addition, we verified several effects of both average and fluctuation for the excitatory period interval on the synchronization of excitatory conduction. Our proposed numerical simulator constructed by employing Barkley's model qualitatively realized a synchronization of excitatory conduction between beating cells. The synchronization of excitatory conduction was regulated by single cell for which both the average and standard deviation for excitatory period interval is smaller than those of other cells. As a result, it was clear that both the average and the standard deviation for the excitatory period interval played an important role in the synchronization of excitatory conduction between beating cells. Therefore, a consideration of both the average and the standard deviation for excitatory period interval is indispensable to elucidation of a mechanism of the synchronization between beating cells.

Original languageEnglish
Title of host publicationWorld Congress on Medical Physics and Biomedical Engineering
Subtitle of host publicationImage Processing, Biosignal Processing, Modelling and Simulation, Biomechanics
PublisherSpringer Verlag
Pages1857-1860
Number of pages4
Edition4
ISBN (Print)9783642038815
DOIs
Publication statusPublished - 2009
EventWorld Congress on Medical Physics and Biomedical Engineering: Image Processing, Biosignal Processing, Modelling and Simulation, Biomechanics - Munich, Germany
Duration: Sept 7 2009Sept 12 2009

Publication series

NameIFMBE Proceedings
Number4
Volume25
ISSN (Print)1680-0737

Other

OtherWorld Congress on Medical Physics and Biomedical Engineering: Image Processing, Biosignal Processing, Modelling and Simulation, Biomechanics
Country/TerritoryGermany
CityMunich
Period9/7/099/12/09

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Numerical simulation for synchronization of excitatory action between beating cells'. Together they form a unique fingerprint.

Cite this