Numerical and experimental study on a floating platform for offshore renewable energy

Changhong Hu, Yusaku Kyozuka, Yuji Ohya, Chen Liu, Makoto Sueyoshi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Citations (Scopus)

Abstract

This paper presents recent experimental and numerical work on dynamic analysis and load prediction of a floating platform. A new offshore renewable energy platform is designed for the second stage on-sea experiment of Kyushu University. An experiment is carried out in the towing tank with a 1/50 scale model, to verify the hydrodynamic performance of the platform and to prepare a benchmark database for validation of the numerical simulation method. The in-house CFD code, RIAM-CMEN, is extended for numerical simulation of the platform in harsh sea conditions. Numerical simulation is carried out and validated against the experiment.

Original languageEnglish
Title of host publicationASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2013
DOIs
Publication statusPublished - 2013
EventASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2013 - Nantes, France
Duration: Jun 9 2013Jun 14 2013

Publication series

NameProceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
Volume8

Other

OtherASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2013
Country/TerritoryFrance
CityNantes
Period6/9/136/14/13

All Science Journal Classification (ASJC) codes

  • Ocean Engineering
  • Energy Engineering and Power Technology
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Numerical and experimental study on a floating platform for offshore renewable energy'. Together they form a unique fingerprint.

Cite this