TY - GEN
T1 - Numerical analysis of aero-hydrodynamic responses of floating offshore wind turbine considering blade deformation
AU - Huang, Yang
AU - Wan, Decheng
AU - Hu, Changhong
N1 - Publisher Copyright:
© 2021 by the International Society of Offshore and Polar Engineers (ISOPE).
PY - 2021
Y1 - 2021
N2 - With the increasing of rated power of offshore wind turbines, the blade is becoming longer and slender. This leads to the significant structural deformation of the wind turbine blade and further make the aerodynamic responses of offshore wind turbines unsteady. Moreover, the change in wind turbine aerodynamics will alter the coupled performance of floating offshore wind turbines because of strong interference effects between the wind turbine and the floating platform. In the present work, a coupled aero-hydrodynamic analysis model for floating offshore wind turbines considering blade deformation is established. The actuator line technique is applied to calculate the aerodynamic loads and reproduce the turbine wake. The structural dynamic equations and the finite element method are used to obtain the blade deformation. Coupling effects between the aerodynamic responses of wind turbine and the structural deformation of blade are taken into consideration. In addition, the hydrodynamic responses of floating platform and mooring system are predicted by in-house CFD code naoe-FOAM-SJTU. The aeroelastic module is firstly validated by the previous numerical results. Then coupled aero-hydrodynamic responses of a spar-type floating offshore wind turbine under combined wind-wave loads are analyzed in detail using the proposed analysis model. It is found that the average aerodynamic loads including rotor power and thrust decrease and the fluctuation amplitude of aerodynamic power increases when the blade deformation is considered. The blade deformation shows small effects on the wake velocity, while it has significant effects on the blade structural bending moments.
AB - With the increasing of rated power of offshore wind turbines, the blade is becoming longer and slender. This leads to the significant structural deformation of the wind turbine blade and further make the aerodynamic responses of offshore wind turbines unsteady. Moreover, the change in wind turbine aerodynamics will alter the coupled performance of floating offshore wind turbines because of strong interference effects between the wind turbine and the floating platform. In the present work, a coupled aero-hydrodynamic analysis model for floating offshore wind turbines considering blade deformation is established. The actuator line technique is applied to calculate the aerodynamic loads and reproduce the turbine wake. The structural dynamic equations and the finite element method are used to obtain the blade deformation. Coupling effects between the aerodynamic responses of wind turbine and the structural deformation of blade are taken into consideration. In addition, the hydrodynamic responses of floating platform and mooring system are predicted by in-house CFD code naoe-FOAM-SJTU. The aeroelastic module is firstly validated by the previous numerical results. Then coupled aero-hydrodynamic responses of a spar-type floating offshore wind turbine under combined wind-wave loads are analyzed in detail using the proposed analysis model. It is found that the average aerodynamic loads including rotor power and thrust decrease and the fluctuation amplitude of aerodynamic power increases when the blade deformation is considered. The blade deformation shows small effects on the wake velocity, while it has significant effects on the blade structural bending moments.
UR - http://www.scopus.com/inward/record.url?scp=85115016744&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85115016744&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85115016744
SN - 9781880653821
T3 - Proceedings of the International Offshore and Polar Engineering Conference
SP - 450
EP - 458
BT - Proceedings of the 31st International Ocean and Polar Engineering Conference, ISOPE 2021
PB - International Society of Offshore and Polar Engineers
T2 - 31st International Ocean and Polar Engineering Conference, ISOPE 2021
Y2 - 20 June 2021 through 25 June 2021
ER -