Numerical analysis of aero-hydrodynamic responses of floating offshore wind turbine considering blade deformation

Yang Huang, Decheng Wan, Changhong Hu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Citations (Scopus)

Abstract

With the increasing of rated power of offshore wind turbines, the blade is becoming longer and slender. This leads to the significant structural deformation of the wind turbine blade and further make the aerodynamic responses of offshore wind turbines unsteady. Moreover, the change in wind turbine aerodynamics will alter the coupled performance of floating offshore wind turbines because of strong interference effects between the wind turbine and the floating platform. In the present work, a coupled aero-hydrodynamic analysis model for floating offshore wind turbines considering blade deformation is established. The actuator line technique is applied to calculate the aerodynamic loads and reproduce the turbine wake. The structural dynamic equations and the finite element method are used to obtain the blade deformation. Coupling effects between the aerodynamic responses of wind turbine and the structural deformation of blade are taken into consideration. In addition, the hydrodynamic responses of floating platform and mooring system are predicted by in-house CFD code naoe-FOAM-SJTU. The aeroelastic module is firstly validated by the previous numerical results. Then coupled aero-hydrodynamic responses of a spar-type floating offshore wind turbine under combined wind-wave loads are analyzed in detail using the proposed analysis model. It is found that the average aerodynamic loads including rotor power and thrust decrease and the fluctuation amplitude of aerodynamic power increases when the blade deformation is considered. The blade deformation shows small effects on the wake velocity, while it has significant effects on the blade structural bending moments.

Original languageEnglish
Title of host publicationProceedings of the 31st International Ocean and Polar Engineering Conference, ISOPE 2021
PublisherInternational Society of Offshore and Polar Engineers
Pages450-458
Number of pages9
ISBN (Print)9781880653821
Publication statusPublished - 2021
Event31st International Ocean and Polar Engineering Conference, ISOPE 2021 - Virtual, Online
Duration: Jun 20 2021Jun 25 2021

Publication series

NameProceedings of the International Offshore and Polar Engineering Conference
ISSN (Print)1098-6189
ISSN (Electronic)1555-1792

Conference

Conference31st International Ocean and Polar Engineering Conference, ISOPE 2021
CityVirtual, Online
Period6/20/216/25/21

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Ocean Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Numerical analysis of aero-hydrodynamic responses of floating offshore wind turbine considering blade deformation'. Together they form a unique fingerprint.

Cite this