Novel computational chemistry approaches for studying physico-chemical properties of zeolite materials

Akira Miyamoto, Yasunori Kobayashi, Mohamed Elanany, Hideyuki Tsuboi, Michihisa Koyama, Akira Endou, Hiromitsu Takaba, Momoji Kubo, Carlos A. Del Carpio, Parasuraman Selvam

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


Computational chemistry has made tremendous impact on the development of zeolite materials. Molecular dynamics (MD), Monte Carlo (MC), quantum chemistry (QC), and quantum chemical molecular dynamics (QCMD) methods have been applied to the studies of diffusion processes, adsorption characteristics, catalytic reaction mechanism, synthesis processes, acidic properties, etc. in zeolite materials. However, these traditional approaches are not able to accommodate complicated realistic systems because of their approximations and of the limitation of calculation models. To establish a novel computational chemistry approach for exploring new physico-chemical properties of zeolite materials, we have developed a novel dual ensemble MD (DEMD) program and original tight-binding QCMD program, 'Colors'. The DEMD program can perform the permeation and separation dynamics simulation considering the gradient of chemical potential in a simulation cell. Colors program is over 5000 times faster than the traditional first-principles QCMD simulator. Hence, it enables us to employ more realistic large-scale models. Furthermore, we have also performed large-scale QC calculations based on the density functional theory (DFT) with a whole unit cell model of a zeolite material considering the periodic boundary condition (PBC). In this review, we put forward the application of our novel theoretical approaches for studying physico-chemical properties of zeolite materials.

Original languageEnglish
Pages (from-to)324-333
Number of pages10
JournalMicroporous and Mesoporous Materials
Issue number1-2 SPEC. ISS.
Publication statusPublished - Apr 19 2007
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials


Dive into the research topics of 'Novel computational chemistry approaches for studying physico-chemical properties of zeolite materials'. Together they form a unique fingerprint.

Cite this