Notch-dependent cell cycle arrest and apoptosis in mouse embryonic fibroblasts lacking Fbxw7

Y. Ishikawa, I. Onoyama, K. I. Nakayama, K. Nakayama

Research output: Contribution to journalArticlepeer-review

48 Citations (Scopus)


The F-box protein Fbxw7 mediates the ubiquitylation and consequent degradation of proteins that regulate cell cycle progression, including cyclin E, c-Myc, c-Jun and Notch. Moreover, certain human cancer cell lines harbor loss-of-function mutations in FBXW7 that result in excessive accumulation of Fbxw7 substrates, implicating Fbxw7 in tumor suppression. To elucidate the physiological function of Fbxw7, we conditionally ablated Fbxw7 in mouse embryonic fibroblasts (MEFs). Unexpectedly, loss of Fbxw7 induced cell cycle arrest and apoptosis that were accompanied by abnormal accumulation of the intracellular domain of Notch1 (NICD1). Forced expression of NICD1 in wild-type MEFs recapitulated the phenotype of the Fbxw7-deficient (Fbxw7 Δ/Δ) MEFs. Conversely, deletion of Rbpj normalized the phenotype of Fbxw7Δ/Δ MEFs, indicating that this phenotype is dependent on the Notch1-RBP-J signaling pathway. Deletion of the p53 gene prevented cell cycle arrest but not the induction of apoptosis in Fbxw7Δ/Δ cells. These observations suggest that Fbxw7 does not function as an oncosuppressor in MEFs. Instead, it promotes cell cycle progression and cell survival through degradation of Notch1, with loss of Fbxw7 resulting in NICD1 accumulation, cell cycle arrest and apoptosis.

Original languageEnglish
Pages (from-to)6164-6174
Number of pages11
Issue number47
Publication statusPublished - Oct 16 2008

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Genetics
  • Cancer Research


Dive into the research topics of 'Notch-dependent cell cycle arrest and apoptosis in mouse embryonic fibroblasts lacking Fbxw7'. Together they form a unique fingerprint.

Cite this