Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping

Wonryung Lee, Shingo Kobayashi, Masase Nagase, Yasutoshi Jimbo, Itsuro Saito, Yusuke Inoue, Tomoyuki Yambe, Masaki Sekino, George G. Malliaras, Tomoyuki Yokota, Masaru Tanaka, Takao Someya

Research output: Contribution to journalArticlepeer-review

123 Citations (Scopus)

Abstract

High-precision monitoring of electrophysiological signals with high spatial and temporal resolutions is one of the most important subjects for elucidating physiology functions. Recently, ultraflexible multielectrode arrays (MEAs) have been fabricated to establish conformal contacts with the surface of organs and to measure propagation of electrophysiological signals with high spatial-temporal resolution; however, plastic substrates have high Young's modulus, causing difficulties in creating appropriate stretchability and blood compatibility for applying them on the dynamically moving and surgical bleeding surface of the heart. Here, we have successfully fabricated an active MEA that simultaneously achieves nonthrombogenicity, stretchability, and stability, which allows long-term electrocardiographic (ECG) monitoring of the dynamically moving hearts of rats even with capillary bleeding. Because of the active data readout, the measured ECG signals exhibit a high signal-to-noise ratio of 52 dB. The novel stretchable MEA is carefully designed using state-of-the-art engineering techniques by combining extraordinarily high gain organic electrochemical transistors processed on microgrid substrates and a coating of poly(3-methoxypropyl acrylate), which exhibits significant antithrombotic properties while maintaining excellent ionic conductivity.

Original languageEnglish
Article numbereaau2426
JournalScience Advances
Volume4
Issue number10
DOIs
Publication statusPublished - Oct 19 2018

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping'. Together they form a unique fingerprint.

Cite this