TY - GEN
T1 - Nonlinear sloshing analysis by using concentrated mass model
AU - Yoshitake, Tatsuhiro
AU - Ishikawa, Satoshi
AU - Kondou, Takahiro
AU - Matsuzaki, Kenichiro
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Sloshing phenomena in containers under earthquakes often cause serious accidents. In case of an oil tank with floating roof, the sloshing phenomenon and the structural vibration should be treated as the coupled problem.Lagrangian fluid finite element model has been used for the analysis of the coupled problem because the compatibility and the equilibrium condition are automatically satisfied at the boundary between the fluid and the structure. However, the degree of freedom of the Lagrangian model becomes large because the fluid particles in the Lagrangian model move vertically and horizontally. In addition, the Lagrangian model has physically-meaningless spurious modes caused by the redundancy of the degree of freedom. In this paper, the efficient and accurate nonlinear analytical model for vertical horizontal two-dimensional nonlinear sloshing phenomena is established. The model consists of masses, nonlinear connecting springs, and connecting dampers. Some masses move horizontally, the others move vertically. The horizontally movable masses are governed by the equations of motion. The vertical displacements of masses are determined from the displacements of the horizontally movable masses based on the incompressibility of the liquid. The characteristics of the connecting springs are derived from the static and dynamic pressures of the liquid. Furthermore, the degree of freedom of the masses distributed in two-dimensional elements is reduced to that of masses distributed in horizontal one-dimensional elements. The degree of freedom of the proposed model is smaller than that of Lagrangian model and the spurious modes does not occur in the proposed model. The natural frequencies and natural modes are compared with the theoretical values. In addition, the numerical results calculated with the concentrated mass model is compared with experimental results. These numerical results agree well with the theoretical values and the experimental results. Therefore, the validity of the proposed model is confirmed
AB - Sloshing phenomena in containers under earthquakes often cause serious accidents. In case of an oil tank with floating roof, the sloshing phenomenon and the structural vibration should be treated as the coupled problem.Lagrangian fluid finite element model has been used for the analysis of the coupled problem because the compatibility and the equilibrium condition are automatically satisfied at the boundary between the fluid and the structure. However, the degree of freedom of the Lagrangian model becomes large because the fluid particles in the Lagrangian model move vertically and horizontally. In addition, the Lagrangian model has physically-meaningless spurious modes caused by the redundancy of the degree of freedom. In this paper, the efficient and accurate nonlinear analytical model for vertical horizontal two-dimensional nonlinear sloshing phenomena is established. The model consists of masses, nonlinear connecting springs, and connecting dampers. Some masses move horizontally, the others move vertically. The horizontally movable masses are governed by the equations of motion. The vertical displacements of masses are determined from the displacements of the horizontally movable masses based on the incompressibility of the liquid. The characteristics of the connecting springs are derived from the static and dynamic pressures of the liquid. Furthermore, the degree of freedom of the masses distributed in two-dimensional elements is reduced to that of masses distributed in horizontal one-dimensional elements. The degree of freedom of the proposed model is smaller than that of Lagrangian model and the spurious modes does not occur in the proposed model. The natural frequencies and natural modes are compared with the theoretical values. In addition, the numerical results calculated with the concentrated mass model is compared with experimental results. These numerical results agree well with the theoretical values and the experimental results. Therefore, the validity of the proposed model is confirmed
UR - http://www.scopus.com/inward/record.url?scp=85084013022&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85084013022&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85084013022
T3 - Proceedings of the 26th International Congress on Sound and Vibration, ICSV 2019
BT - Proceedings of the 26th International Congress on Sound and Vibration, ICSV 2019
PB - Canadian Acoustical Association
T2 - 26th International Congress on Sound and Vibration, ICSV 2019
Y2 - 7 July 2019 through 11 July 2019
ER -