Nonlinear management of topological solitons in a spin-orbit-coupled system

Hidetsugu Sakaguchi, Boris Malomed

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


We consider possibilities to control dynamics of solitons of two types, maintained by the combination of cubic attraction and spin-orbit coupling (SOC) in a two-component system, namely, semi-dipoles (SDs) and mixed modes (MMs), by making the relative strength of the cross-attraction, g, a function of time periodically oscillating around the critical value, γ = 1, which is an SD/MM stability boundary in the static system. The structure of SDs is represented by the combination of a fundamental soliton in one component and localized dipole mode in the other, while MMs combine fundamental and dipole terms in each component. Systematic numerical analysis reveals a finite bistability region for the SDs and MMs around γ = 1, which does not exist in the absence of the periodic temporal modulation ("management"), as well as emergence of specific instability troughs and stability tongues for the solitons of both types, which may be explained as manifestations of resonances between the time-periodic modulation and intrinsic modes of the solitons. The system can be implemented in Bose-Einstein condensates (BECs), and emulated in nonlinear optical waveguides.

Original languageEnglish
Article number388
Issue number3
Publication statusPublished - Mar 1 2019

All Science Journal Classification (ASJC) codes

  • Computer Science (miscellaneous)
  • Chemistry (miscellaneous)
  • General Mathematics
  • Physics and Astronomy (miscellaneous)


Dive into the research topics of 'Nonlinear management of topological solitons in a spin-orbit-coupled system'. Together they form a unique fingerprint.

Cite this