Noninvasive machine-learning models for the detection of lesion-specific ischemia in patients with stable angina with intermediate stenosis severity on coronary CT angiography

Hiroshi Hamasaki, Hidetaka Arimura, Yuzo Yamasaki, Takayuki Yamamoto, Mitsuhiro Fukata, Tetsuya Matoba, Toyoyuki Kato, Kousei Ishigami

Research output: Contribution to journalArticlepeer-review

Abstract

This study proposed noninvasive machine-learning models for the detection of lesion-specific ischemia (LSI) in patients with stable angina with intermediate stenosis severity based on coronary computed tomography (CT) angiography. This single-center retrospective study analyzed 76 patients (99 vessels) with stable angina who underwent coronary CT angiography (CCTA) and had intermediate stenosis severity (40-69%) on invasive coronary angiography. LSI, defined as a resting full-cycle ratio < 0.86 or fractional flow reserve ≤ 0.80, was determined in 40 patients (46 vessels) using a hybrid resting full-cycle ratio-fractional flow reserve strategy. The resting full-cycle ratio and/or fractional flow reserve were measured using invasive coronary angiography as references for functional severity indices of coronary stenosis in the machine-learning models. LSI detection models were constructed using noninvasive machine-learning models that predicted the resting full-cycle ratio and fractional flow reserve by feeding machine-learning models with image features extracted from CCTA. The diagnostic performance of the proposed LSI detection models was assessed using a nested 10-fold cross-validation test. The LSI detection models with the highest diagnostic performance achieved an accuracy of 0.88 (95% CI: 0.81, 0.94), sensitivity of 0.78 (95% CI: 0.70, 0.86) and specificity of 0.96 (95% CI: 0.92, 1.00) on a vessel basis and 0.88 (95% CI: 0.81, 0.95), 0.80 (95% CI: 0.70, 0.86) and 0.97 (95% CI: 0.92, 1.00), respectively, on a patient basis. These findings suggest that LSI detection models with features extracted from CCTA can noninvasively detect LSI in patients with stable angina with intermediate stenosis severity.

Original languageEnglish
JournalPhysical and Engineering Sciences in Medicine
DOIs
Publication statusAccepted/In press - 2025

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Radiological and Ultrasound Technology
  • Biophysics
  • Biomedical Engineering
  • Instrumentation
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Noninvasive machine-learning models for the detection of lesion-specific ischemia in patients with stable angina with intermediate stenosis severity on coronary CT angiography'. Together they form a unique fingerprint.

Cite this