TY - JOUR
T1 - NMDA receptor activation upstream of methyl farnesoate signaling for short day-induced male offspring production in the water flea, Daphnia pulex
AU - Toyota, Kenji
AU - Miyakawa, Hitoshi
AU - Yamaguchi, Katsushi
AU - Shigenobu, Shuji
AU - Ogino, Yukiko
AU - Tatarazako, Norihisa
AU - Miyagawa, Shinichi
AU - Iguchi, Taisen
N1 - Funding Information:
We would like to thank Drs. John K. Colbourne, University of Birmingham, Taro Maeda, Kota Ogawa and Eiji Watanabe, National Institute for Basic Biology (NIBB), for their technical advice and materials; Ms. Sachiko Wakazuki and Miwako Matsumoto, NIBB, for their technical support for NGS sequencing; members of the Iguchi laboratory for helpful advice and constructive criticism. D. pulex genomic sequence data was produced by The Center for Genomics and Bioinformatics at Indiana University and distributed via wFleaBase in collaboration with the Daphnia Genomics Consortium (https://wiki.cgb.indiana. edu/display/DGC/Home). This work was supported by a JSPS Research Fellowship for Young Scientists (KT) (No.12 J05579), a Sasakawa Scientific Research Grant from The Japan Science Society (KT), a Saito Ho-on Kai Scientific Research Grant from The Saito Gratitude Foundation (KT), grants from the Ministry of Education, Culture, Sports, Science and Technology (YO, SM, TI), the Ministry of the Environment of Japan (NT, TI), a grant from the National Institute for Basic Biology (TI), and the Research Council of Norway (project 221455), and Adverse Outcome Pathways for Endocrine Disruption in Daphnia magna, a conceptual approach for mechanistically-based risk assessment (TI).
Publisher Copyright:
© Toyota et al.
PY - 2015/3/14
Y1 - 2015/3/14
N2 - Background: The cladoceran crustacean Daphnia pulex produces female offspring by parthenogenesis under favorable conditions, but in response to various unfavorable external stimuli, it produces male offspring (environmental sex determination: ESD). We recently established an innovative system for ESD studies using D. pulex WTN6 strain, in which the sex of the offspring can be controlled simply by changes in the photoperiod: the long-day and short-day conditions can induce female and male offspring, respectively. Taking advantage of this system, we demonstrated that de novo methyl farnesoate (MF) synthesis is necessary for male offspring production. These results indicate the key role of innate MF signaling as a conductor between external environmental stimuli and the endogenous male developmental pathway. Despite these findings, the molecular mechanisms underlying up- and downstream signaling of MF have not yet been well elucidated in D. pulex. Results: To elucidate up- and downstream events of MF signaling during sex determination processes, we compared the transcriptomes of daphnids reared under the long-day (female) condition with short-day (male) and MF-treated (male) conditions. We found that genes involved in ionotropic glutamate receptors, known to mediate the vast majority of excitatory neurotransmitting processes in various organisms, were significantly activated in daphnids by the short-day condition but not by MF treatment. Administration of specific agonists and antagonists, especially for the N-methyl-D-aspartic acid (NMDA) receptor, strongly increased or decreased, respectively, the proportion of male-producing mothers. Moreover, we also identified genes responsible for male production (e.g., protein kinase C pathway-related genes). Such genes were generally shared between the short-day reared and MF-treated daphnids. Conclusions: We identified several candidate genes regulating ESD which strongly suggests that these genes may be essential factors for male offspring production as an upstream regulator of MF signaling in D. pulex. This study provides new insight into the fundamental mechanisms underlying how living organisms alter their phenotypes in response to various external environments.
AB - Background: The cladoceran crustacean Daphnia pulex produces female offspring by parthenogenesis under favorable conditions, but in response to various unfavorable external stimuli, it produces male offspring (environmental sex determination: ESD). We recently established an innovative system for ESD studies using D. pulex WTN6 strain, in which the sex of the offspring can be controlled simply by changes in the photoperiod: the long-day and short-day conditions can induce female and male offspring, respectively. Taking advantage of this system, we demonstrated that de novo methyl farnesoate (MF) synthesis is necessary for male offspring production. These results indicate the key role of innate MF signaling as a conductor between external environmental stimuli and the endogenous male developmental pathway. Despite these findings, the molecular mechanisms underlying up- and downstream signaling of MF have not yet been well elucidated in D. pulex. Results: To elucidate up- and downstream events of MF signaling during sex determination processes, we compared the transcriptomes of daphnids reared under the long-day (female) condition with short-day (male) and MF-treated (male) conditions. We found that genes involved in ionotropic glutamate receptors, known to mediate the vast majority of excitatory neurotransmitting processes in various organisms, were significantly activated in daphnids by the short-day condition but not by MF treatment. Administration of specific agonists and antagonists, especially for the N-methyl-D-aspartic acid (NMDA) receptor, strongly increased or decreased, respectively, the proportion of male-producing mothers. Moreover, we also identified genes responsible for male production (e.g., protein kinase C pathway-related genes). Such genes were generally shared between the short-day reared and MF-treated daphnids. Conclusions: We identified several candidate genes regulating ESD which strongly suggests that these genes may be essential factors for male offspring production as an upstream regulator of MF signaling in D. pulex. This study provides new insight into the fundamental mechanisms underlying how living organisms alter their phenotypes in response to various external environments.
UR - http://www.scopus.com/inward/record.url?scp=84925307033&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84925307033&partnerID=8YFLogxK
U2 - 10.1186/s12864-015-1392-9
DO - 10.1186/s12864-015-1392-9
M3 - Article
C2 - 25867484
AN - SCOPUS:84925307033
SN - 1471-2164
VL - 16
JO - BMC genomics
JF - BMC genomics
IS - 1
M1 - 186
ER -