Neural Networks Designed on Approximate Reasoning Architecture and Their Applications

Hideyuki Takagi, Toshiyuki Koda, Yoshihiro Kojima, Noriyuki Suzuki

Research output: Contribution to journalArticlepeer-review

108 Citations (Scopus)


This paper proposes the NARA model and shows its composition procedure and evaluation. NARA is a neural network (NN) designed on the structure of fuzzy inference rules. The distinctive feature of NARA is that its internal state can be analyzed according to the rule structure, and the problematic portion can be easily located and improved. Second, we demonstrate the ease with which performance can be improved by applying the NARA model to pattern classification problems. Third, the NARA model is shown to be more efficient than ordinary NN models. In NARA, characteristics of the application task can be built into the NN model in advance by employing logic structure, in the form of fuzzy inference rules. Therefore, it is relatively easier to improve the performance of NARA, in which the internal state can be observed because of its structure, than an ordinary NN model, which is like a black box. Examples are introduced by applying the NARA model to the two problems of auto adjustment of VTR tape running mechanisms and alphanumeric character recognition.

Original languageEnglish
Pages (from-to)752-760
Number of pages9
JournalIEEE Transactions on Neural Networks
Issue number5
Publication statusPublished - Sept 1992
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Science Applications
  • Computer Networks and Communications
  • Artificial Intelligence


Dive into the research topics of 'Neural Networks Designed on Approximate Reasoning Architecture and Their Applications'. Together they form a unique fingerprint.

Cite this