TY - JOUR
T1 - Mutational analysis of a function of xeroderma pigmentosum group A (XPA) protein in strand-specific DNA repair
AU - Kobayashi, Takehiro
AU - Takeuchi, Seiji
AU - Saijo, Masafumi
AU - Nakatsu, Yoshimichi
AU - Morioka, Hiroshi
AU - Otsuka, Eiko
AU - Wakasugi, Mitsuo
AU - Nikaido, Osamu
AU - Tanaka, Kiyoji
N1 - Funding Information:
We thank Drs Philip C. Hanawalt and Vilhelm A. Bohr for making it feasible to examine the strand-specific DNA repair activity of the XP-A transfectants. This work was supported by a Grant in Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan, and by a Grant in Aid for Research on Human Genome and Gene Therapy from the Ministry of Health and Welfare of Japan.
PY - 1998/10/15
Y1 - 1998/10/15
N2 - To analyze the function of the xeroderma pigmentosum group A (XPA) protein in strand-specific DNA repair, we examined repair of UV-induced cyclobutane pyrimidine dimer (CPD) in transcribed and non-transcribed strands of the dihydrofolate reductase gene of xeroderma pigmentosum group A (XP-A) cell line (XP12ROSV) which was transfected with various types of mutant XPA cDNA. The transfectant overexpressing mutant XPA with a defect in the interaction with either ERCC1, replication protein A (RPA), or general transcription factor TFIIH, showed more or loss decreased repair of CPD in each strand in parallel, while in the transfectant overexpressing R207G (Arg207 to Gly) mutant XPA derived from XP129, a UV-resistant XP12ROSV revertant, the rate of CPD repair was almost normal in each strand. We also examined the dose responses of the XPA protein on CPD repair in each strand by the modulation of the expression levels of wild-type or R207G mutant XPA using an inducible expression system, LacSwitch® promoter. There were good correlations between the rate of CPD repair in each strand and the amount of XPA protein produced in these Lac cells. Our results indicate that the XPA protein is equally important for the CPD repair in both transcribed and non-transcribed strands and that the R207G mutation found in XP129 may not be responsible for a selective defect in CPD repair in the non-transcribed strand in XP129.
AB - To analyze the function of the xeroderma pigmentosum group A (XPA) protein in strand-specific DNA repair, we examined repair of UV-induced cyclobutane pyrimidine dimer (CPD) in transcribed and non-transcribed strands of the dihydrofolate reductase gene of xeroderma pigmentosum group A (XP-A) cell line (XP12ROSV) which was transfected with various types of mutant XPA cDNA. The transfectant overexpressing mutant XPA with a defect in the interaction with either ERCC1, replication protein A (RPA), or general transcription factor TFIIH, showed more or loss decreased repair of CPD in each strand in parallel, while in the transfectant overexpressing R207G (Arg207 to Gly) mutant XPA derived from XP129, a UV-resistant XP12ROSV revertant, the rate of CPD repair was almost normal in each strand. We also examined the dose responses of the XPA protein on CPD repair in each strand by the modulation of the expression levels of wild-type or R207G mutant XPA using an inducible expression system, LacSwitch® promoter. There were good correlations between the rate of CPD repair in each strand and the amount of XPA protein produced in these Lac cells. Our results indicate that the XPA protein is equally important for the CPD repair in both transcribed and non-transcribed strands and that the R207G mutation found in XP129 may not be responsible for a selective defect in CPD repair in the non-transcribed strand in XP129.
UR - http://www.scopus.com/inward/record.url?scp=0032531868&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032531868&partnerID=8YFLogxK
U2 - 10.1093/nar/26.20.4662
DO - 10.1093/nar/26.20.4662
M3 - Article
C2 - 9753735
AN - SCOPUS:0032531868
SN - 0305-1048
VL - 26
SP - 4662
EP - 4668
JO - Nucleic acids research
JF - Nucleic acids research
IS - 20
ER -