TY - JOUR
T1 - Monoolein assisted oil-based transdermal delivery of powder vaccine
AU - Kitaoka, Momoko
AU - Oka, Atsushi
AU - Goto, Masahiro
N1 - Funding Information:
Funding: This research was funded by Nissan Chemical Corporation.
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/9
Y1 - 2020/9
N2 - An increasing number of protein vaccines have been researched for cancer, inflammation, and allergy therapies. Most of the protein therapeutics are administered through injection because orally-administered proteins are metabolized by the digestive system. Although transdermal administration has received increasing attention, the natural barrier formed by the skin is an obstacle. Monoolein is a common skin penetration enhancer that facilitates topical and transdermal drug delivery. Conventionally, it has been used in an aqueous vehicle, often with polyhydric alcohols. In the current study, monoolein was dissolved in an oil vehicle, isopropyl myristate, to facilitate the skin permeation of powder proteins. The skin permeabilities of the proteins were examined in-vivo and ex-vivo. Monoolein concentration-dependently enhanced the skin permeation of proteins. The protein permeability correlated with the zeta potential of the macromolecules. Dehydration of the stratum corneum (SC), lipid extraction from the SC, and disordering of ceramides caused by monoolein were demonstrated through Fourier transform infrared spectroscopic analysis and small-angle X-ray scattering analysis. An antigen model protein, ovalbumin from egg white, was delivered to immune cells in living mice, and induced antigen-specific IgG antibodies. The patch system showed the potential for transdermal vaccine delivery.
AB - An increasing number of protein vaccines have been researched for cancer, inflammation, and allergy therapies. Most of the protein therapeutics are administered through injection because orally-administered proteins are metabolized by the digestive system. Although transdermal administration has received increasing attention, the natural barrier formed by the skin is an obstacle. Monoolein is a common skin penetration enhancer that facilitates topical and transdermal drug delivery. Conventionally, it has been used in an aqueous vehicle, often with polyhydric alcohols. In the current study, monoolein was dissolved in an oil vehicle, isopropyl myristate, to facilitate the skin permeation of powder proteins. The skin permeabilities of the proteins were examined in-vivo and ex-vivo. Monoolein concentration-dependently enhanced the skin permeation of proteins. The protein permeability correlated with the zeta potential of the macromolecules. Dehydration of the stratum corneum (SC), lipid extraction from the SC, and disordering of ceramides caused by monoolein were demonstrated through Fourier transform infrared spectroscopic analysis and small-angle X-ray scattering analysis. An antigen model protein, ovalbumin from egg white, was delivered to immune cells in living mice, and induced antigen-specific IgG antibodies. The patch system showed the potential for transdermal vaccine delivery.
UR - http://www.scopus.com/inward/record.url?scp=85092435230&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092435230&partnerID=8YFLogxK
U2 - 10.3390/pharmaceutics12090814
DO - 10.3390/pharmaceutics12090814
M3 - Article
AN - SCOPUS:85092435230
SN - 1999-4923
VL - 12
SP - 1
EP - 13
JO - Pharmaceutics
JF - Pharmaceutics
IS - 9
M1 - 814
ER -