Monolithic processing of a layered flexible robotic actuator film for kinetic electronics

Shiyi Zhang, Joseph Wang, Kenshi Hayashi, Fumihiro Sassa

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


Low-invasive soft robotic techniques can potentially be used for developing next-generation body–machine interfaces. Most soft robots require complicated fabrication processes involving 3D printing and bonding/assembling. In this letter, we describe a monolithic soft microrobot fabrication process for the mass production of soft film robots with a complex structure by simple 2D processing of a robotic actuator film. The 45 µg/mm2 lightweight film robot can be driven at a voltage of CMOS compatible 5 V with 0.15 mm−1 large curvature changes; it can generate a force 5.7 times greater than its self-weight. In a durability test, actuation could be carried out over 8000 times without degradation. To further demonstrate this technique, three types of film robots with multiple degrees of freedom and a moving illuminator robot were fabricated. This technique can easily integrate various electrical circuits developed in the past to robotic systems and can be used for developing advanced wearable sensing devices; it can be called “Kinetic electronics”.

Original languageEnglish
Article number20015
JournalScientific reports
Issue number1
Publication statusPublished - Dec 2021

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Monolithic processing of a layered flexible robotic actuator film for kinetic electronics'. Together they form a unique fingerprint.

Cite this