Monoclinic nanodomains in morphotropic phase boundary Pb(Mg 1/3Nb2/3)O3-PbTiO3

Y. Sato, T. Hirayama, Y. Ikuhara

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

Crystalline structure is a fundamental characteristic of many materials, and drastic changes in properties may accompany crystal phase transitions. A prominent example of this is the morphotropic phase boundary of (Pb(Mg 1/3Nb2/3)O3-PbTiO3) single crystal, a region that exhibits a high piezoelectric effect. Although the highest piezoelectricity is often attributed to a monoclinic crystal phase, formation of ferroelectric nanodomains (NDs) complicates understanding of this crystal structure. In this Letter, we report dedicated transmission electron microscopy and electron diffraction analysis to understand the crystal structure at the ND level. Splitting of diffraction spots, caused by very small lattice distortion in the NDs, is important to understanding crystal structure and has been unambiguously observed. The results can be explained by monoclinic phase NDs. Combining these results with our previous findings on ND dynamics [Sato et al. Phys. Rev. Lett. 107, 187601 (2011)], monoclinic NDs can potentially make a considerable contribution to the piezoelectricity in these materials.

Original languageEnglish
Article number082905
JournalApplied Physics Letters
Volume104
Issue number8
DOIs
Publication statusPublished - Feb 24 2014
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Monoclinic nanodomains in morphotropic phase boundary Pb(Mg 1/3Nb2/3)O3-PbTiO3'. Together they form a unique fingerprint.

Cite this