Abstract
Control of the molecular orientation in a glassy film is a crucial issue, not only for an understanding of the fundamental processes of organic amorphous film formation but also for enhancement of the performance of organic light-emitting diodes (OLEDs) by increasing their light-outcoupling efficiency. In this study, the molecular orientation in codeposited films composed of a host molecule and a disk-shaped emitter that exhibits thermally activated delayed fluorescence is investigated systematically. It is found that the orientation of the transition dipole moment (TDM) of the disk-shaped emitters is strongly dependent on the glass transition temperature and the polarization of the host molecules, and almost perfectly horizontal orientation of the TDM of the disk-shaped emitters can be realized. Our findings clarify the role of the host-guest dipole-dipole interaction in the molecular orientation, and it will enable the expansion of both the molecular design and the material combination rules for high-performance OLEDs.
Original language | English |
---|---|
Article number | 023302 |
Journal | Applied Physics Letters |
Volume | 116 |
Issue number | 2 |
DOIs | |
Publication status | Published - Jan 13 2020 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy (miscellaneous)