Molecular genetics and structural biology of human MutT homolog, MTH1

Yusaku Nakabeppu

Research output: Contribution to journalReview articlepeer-review

110 Citations (Scopus)


The human MTH1 gene located on chromosome 7p22 consists of 5 major exons. MTH1 gene produces seven types of mRNAs and the B-type mRNAs with exon 2b-2c segments direct synthesis of three forms of MTH1 polypeptides (p22, p21, and p18) by alternative initiation of translation, while the others encode only p18. In human cells, p18, the major form is mostly localized in the cytoplasm with some in the mitochondria. A single nucleotide polymorphism (SNP) in exon 2, which is tightly liked to another SNP (GTG83/ATG83), creates an additional alternative in-frame AUG in B-type MTH1 mRNAs yielding the fourth MTH1 polypeptide, p26 that possesses an additional mitochondrial targeting signal. These SNPs are likely to be one of the risk factors for cancer or for neuronal degeneration. The 30 amino acid residues are identical between MTH1 and MutT, and there is a highly conserved region consisting of 23 residues (MTH1: Gly36 to Gly58), with 14 identical residues. A chimeric protein in which the 23 residue sequence of MTH1 was replaced with that of MutT, retains the capability to hydrolyze 8-oxo-dGTP, indicating that the 23 residue sequences of MTH1 and MutT are functionally and structurally equivalent, and constitute a functional phosphohydrolase module. Saturated mutagenesis of the module in MTH1 indicated that an amphipathic property of the α-helix I consisting of 14 residues of the module (Thr44 to Gly58) is essential to maintain the stable catalytic surface for 8-oxo-dGTPase. MTH1 but not MutT efficiently hydrolyzes two forms of oxidized dATP, 2-hydroxy-dATP and 8-oxo-dATP, as well as 8-oxo-dGTP and 8-oxo-GTP. Thus, MTH1 is designated as the oxidized purine nucleoside triphosphatase and has a much wider substrate specificity than MutT. There is a significant homology between MTH1 protein and the C-terminal half of human MYH protein, which may be involved in the recognition of 8-oxoguanine and 2-hydroxyadenine.

Original languageEnglish
Pages (from-to)59-70
Number of pages12
JournalMutation Research - Fundamental and Molecular Mechanisms of Mutagenesis
Issue number1-2
Publication statusPublished - Jun 2 2001

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Genetics
  • Health, Toxicology and Mutagenesis


Dive into the research topics of 'Molecular genetics and structural biology of human MutT homolog, MTH1'. Together they form a unique fingerprint.

Cite this