TY - JOUR
T1 - Molecular cloning, sequencing, purification, and characterization of Pseudomonas aeruginosa ribosome recycling factor
AU - Ohnishi, Makoto
AU - Janosi, Laszlo
AU - Shuda, Masahiro
AU - Matsumoto, Hideki
AU - Hayashi, Tetsuya
AU - Terawaki, Yoshiro
AU - Kaji, Akira
PY - 1999/2
Y1 - 1999/2
N2 - Ribosome recycling factor (RRF) is required for release of 70S ribosomes from mRNA on reaching the termination codon for the next cycle of protein synthesis. The RRF-encoding gene (frr) of Pseudomonas aeruginosa PAO1 was functionally cloned by using a temperature-sensitive frr mutant of Escherichia coli and sequenced. The P. aeruginosa frr was mapped at 30 to 32 min of the P. aeruginosa chromosome. The deduced amino acid sequence of RRF showed a 64% identity to that of E. coli RRF. In an assay including E. coli polysome and elongation factor G, purified recombinant RRF of P. aeruginosa released monosomes from polysomes. This is the first case in which an RRF homologue was found to be active in heterogeneous ribosome recycling machinery. The genes for ribosomal protein S2 (rpsB), elongation factor Ts (tsf), and UMP kinase (pyrH) are located upstream of frr. The arrangement of the genes, rpsB-tsf-pyrH-frr, resembles those reported for E. coli and Bacillus subtilis. Even in the cyanobacterium genome, the arrangement pyrH- frr is conserved. Although RRF homologues are found in eukaryotic cells, phylogenetic analysis suggests that they were originally present within the members of the phylogenetic tree of prokaryotic RRF. This finding suggests that the ribosome recycling step catalyzed by RRF is specific for prokaryotic cells and that eukaryotic RRF is required for protein synthesis in organelles, which are believed to be phylogenetically originated from prokaryotes.
AB - Ribosome recycling factor (RRF) is required for release of 70S ribosomes from mRNA on reaching the termination codon for the next cycle of protein synthesis. The RRF-encoding gene (frr) of Pseudomonas aeruginosa PAO1 was functionally cloned by using a temperature-sensitive frr mutant of Escherichia coli and sequenced. The P. aeruginosa frr was mapped at 30 to 32 min of the P. aeruginosa chromosome. The deduced amino acid sequence of RRF showed a 64% identity to that of E. coli RRF. In an assay including E. coli polysome and elongation factor G, purified recombinant RRF of P. aeruginosa released monosomes from polysomes. This is the first case in which an RRF homologue was found to be active in heterogeneous ribosome recycling machinery. The genes for ribosomal protein S2 (rpsB), elongation factor Ts (tsf), and UMP kinase (pyrH) are located upstream of frr. The arrangement of the genes, rpsB-tsf-pyrH-frr, resembles those reported for E. coli and Bacillus subtilis. Even in the cyanobacterium genome, the arrangement pyrH- frr is conserved. Although RRF homologues are found in eukaryotic cells, phylogenetic analysis suggests that they were originally present within the members of the phylogenetic tree of prokaryotic RRF. This finding suggests that the ribosome recycling step catalyzed by RRF is specific for prokaryotic cells and that eukaryotic RRF is required for protein synthesis in organelles, which are believed to be phylogenetically originated from prokaryotes.
UR - http://www.scopus.com/inward/record.url?scp=0032986643&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032986643&partnerID=8YFLogxK
U2 - 10.1128/jb.181.4.1281-1291.1999
DO - 10.1128/jb.181.4.1281-1291.1999
M3 - Article
C2 - 9973356
AN - SCOPUS:0032986643
SN - 0021-9193
VL - 181
SP - 1281
EP - 1291
JO - Journal of bacteriology
JF - Journal of bacteriology
IS - 4
ER -