TY - GEN
T1 - Modulation of motor cortex excitability by peripheral magnetic stimulation of different stimulus sites and frequencies
AU - Sato, A.
AU - Liu, X.
AU - Torii, T.
AU - Iwahashi, M.
AU - Iramina, K.
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/10/13
Y1 - 2016/10/13
N2 - Peripheral stimulation is known to influence the state of cortical excitability. The purpose of this study is to investigate whether peripheral magnetic stimulation has similar effects on cortical excitability to transcranial magnetic stimulation (TMS). A magnetic stimulator with a flat figure-of-eight coil was used for both TMS, and peripheral magnetic stimulation applied to the bilateral forearms. TMS was performed on the left primary motor cortex to evaluate influence of the peripheral magnetic stimulation, and motor evoked potential (MEP) was measured from the right first dorsal interosseous. Peripheral magnetic stimulation was performed at a stimulus frequency of 1 Hz or 10 Hz, to the stimulus sites on the right and left supination of the forearm. The effects of peripheral magnetic stimulation were evaluated by comparing the mean MEP amplitude elicited by TMS before and after peripheral magnetic stimulation. We found that cortical excitability varied according to the stimulation site and frequency of the peripheral magnetic stimulation. The inhibition of cortical excitability was observed following 1 Hz peripheral magnetic stimulation over the right forearm (p<0.001). In contrast, increased cortical excitability was observed using 1 Hz peripheral magnetic stimulation over the left forearm and 10 Hz stimulation over either the right or left forearms. We suggest that peripheral magnetic stimulation has a similar effect to TMS, and can induce both facilitation and inhibition of cortical excitability.
AB - Peripheral stimulation is known to influence the state of cortical excitability. The purpose of this study is to investigate whether peripheral magnetic stimulation has similar effects on cortical excitability to transcranial magnetic stimulation (TMS). A magnetic stimulator with a flat figure-of-eight coil was used for both TMS, and peripheral magnetic stimulation applied to the bilateral forearms. TMS was performed on the left primary motor cortex to evaluate influence of the peripheral magnetic stimulation, and motor evoked potential (MEP) was measured from the right first dorsal interosseous. Peripheral magnetic stimulation was performed at a stimulus frequency of 1 Hz or 10 Hz, to the stimulus sites on the right and left supination of the forearm. The effects of peripheral magnetic stimulation were evaluated by comparing the mean MEP amplitude elicited by TMS before and after peripheral magnetic stimulation. We found that cortical excitability varied according to the stimulation site and frequency of the peripheral magnetic stimulation. The inhibition of cortical excitability was observed following 1 Hz peripheral magnetic stimulation over the right forearm (p<0.001). In contrast, increased cortical excitability was observed using 1 Hz peripheral magnetic stimulation over the left forearm and 10 Hz stimulation over either the right or left forearms. We suggest that peripheral magnetic stimulation has a similar effect to TMS, and can induce both facilitation and inhibition of cortical excitability.
UR - http://www.scopus.com/inward/record.url?scp=85009121674&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85009121674&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2016.7592196
DO - 10.1109/EMBC.2016.7592196
M3 - Conference contribution
C2 - 28325034
AN - SCOPUS:85009121674
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 6413
EP - 6416
BT - 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
Y2 - 16 August 2016 through 20 August 2016
ER -