Modeling the turbulent heat and momentum transfer in flows under different thermal conditions

Y. Nagano, H. Hattori, K. Abe

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)


Two-equation turbulence models for velocity and temperature (scalar) fields are developed to calculate wall shear flows under various flow conditions and related turbulent heat transfer under various wall thermal conditions. In the present models, we make the modified dissipation rates of both turbulent energy and temperature variance zero at a wall, though the wall limiting behavior of velocity and temperature fluctuations is reproduced exactly. Thus, the models assure computational expediency and convergence. Also, the present k-ε model is constructed using a new type of expression for the Reynolds stress uiuj proposed by Abe et al. [Trans. JSME B 61 (1995) 1714-1721], whose essential feature lies in introducing the explicit algebraic stress model concept into the nonlinear k-ε formulation, and the present two-equation heat transfer model is constructed to properly take into account the effects of wall thermal conditions on the eddy diffusivity for heat. The models are tested with five typical velocity fields and four typical thermal fields. Agreement with experiment and direct simulation data is quite satisfactory.

Original languageEnglish
Pages (from-to)127-142
Number of pages16
JournalFluid Dynamics Research
Issue number1-6
Publication statusPublished - Feb 15 1997
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • General Physics and Astronomy
  • Fluid Flow and Transfer Processes


Dive into the research topics of 'Modeling the turbulent heat and momentum transfer in flows under different thermal conditions'. Together they form a unique fingerprint.

Cite this