Model for thickness dependence of mobility and concentration in highly conductive ZnO

D. C. Look, K. D. Leedy, A. Kiefer, B. Claflin, N. Itagaki, K. Matsushima, I. Surhariadi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)


The dependences of the 294-K and 10-K mobility μ and volume carrier concentration n on thickness (d = 25 -147 nm) were examined in Al-doped ZnO (AZO) layers grown in Ar ambient at 200 °C on quartz-glass substrates. Two AZO layers were grown at each thickness, one with and one without a 20-nm-thick ZnON buffer layer grown at 300 °C in Ar/N2 ambient. Plots of the 10-K sheet concentration ns vs d for buffered (B) and unbuffered (UB) samples give straight lines of similar slope, n = 8.36 x 1020 and 8.32 x 1020 cm-3, but different x-axis intercepts, δd = -4 and +13 nm, respectively. Thus, the electrical thicknesses are d -δd = d + 4 and d -13 nm, respectively. Plots of ns vs d at 294 K produced substantially the same results. Plots of μ vs d can be well fitted with the equation μ(d) = μ(infinity symbol)/[1 + d*/(d-δd)], where d* is the thickness for which μ(infinity symbol) is reduced by a factor 2. For the B and UB samples, d* = 7 and 23 nm, respectively, showing the efficacy of the ZnON buffer. Finally, from n and μ(infinity symbol) we can use degenerate electron scattering theory to calculate bulk donor and acceptor concentrations of 1.23 x 1021 cm-3 and 1.95 x 1020 cm -3, respectively, and Drude theory to predict a plasmonic resonance at1.34 μm. The latter is confirmed by reflectance measurements.

Original languageEnglish
Title of host publicationOxide-Based Materials and Devices IV
Publication statusPublished - 2013
EventOxide-Based Materials and Devices IV - San Francisco, CA, United States
Duration: Feb 3 2013Feb 6 2013

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X


OtherOxide-Based Materials and Devices IV
Country/TerritoryUnited States
CitySan Francisco, CA

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Model for thickness dependence of mobility and concentration in highly conductive ZnO'. Together they form a unique fingerprint.

Cite this